ENVIRONMENTAL PRODUCTS[™]

Dispelling Myths and Extolling the Virtues of the EZVI Technology

Session D6: Advances in Amendment Formulation Wednesday May 24, 2017

Greg Booth, Jim Mueller, – Provectus Environmental Products, Inc. <u>greg.booth@provectusenv.com</u>

Mike Scalzi, Wade Meese – Innovative Environmental Technologies, Inc. (IET)

Cherie Yestrebsky, Chris Clausen (ret.) – University of Central Florida (UCF)

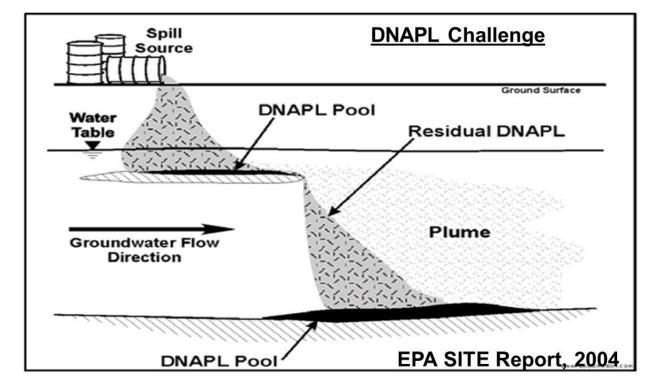
4th International Conference on Bioremediation and Sustainable Environmental Technologies May 22-25, 2017 Miami, FL

5/29/2017

Presentation Outline

- Background and History
- Technology Description
- Implementation
- Technology Update
- Cost & Benefits
- Summary

Presentation GOAL:


For you to gain a good understanding of what the EZVI technology is (and isn't), when it is an appropriate remedial alternative and what are the most recent advancements to the technology.

Copyright Provectus

Background

History – DNAPL Remediation Issues

- Physical Chemistry
 - Hydrophobic
 - Dense & low viscosity
 - Low water solubility
- Location
 - Precision
- Treatment
 - Contact

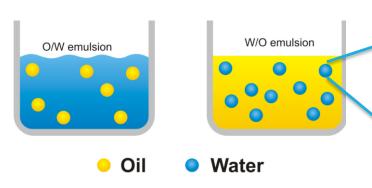
Background

History – Invention of EZVI

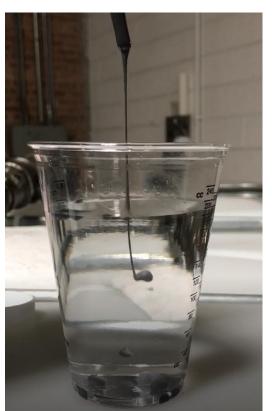
Scientists at UCF and NASA (KSC) invented EZVI to address CHC DNAPL contamination at the Kennedy Space Center in Cape Canaveral, FL.

NASA utilized TCE as a degreaser for rocket engine parts throughout the 1960's.

P

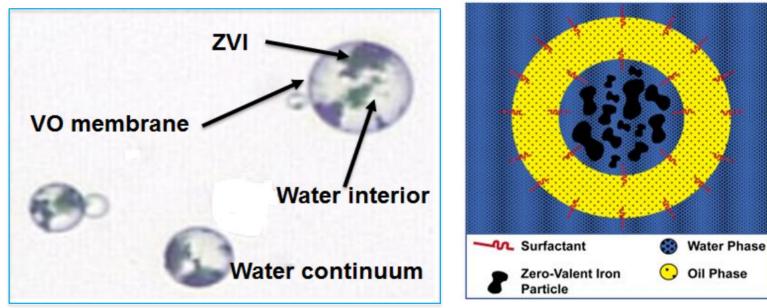

DEVELOPMENTS TO DATE

- 1997 1998: Conceptualization/Development
- 1999 2002: Proof of Concept R&D at UCF/KSC
- 2003 2004: Pilot studies EPA SITE Evaluation
- 2005 1st FULL SCALE implementation PAFB
- 2005 Present: Various Applications across USA, Canada, EU
- 2015 Technology Enhancement new product EZVI-CH4[™]
- 2015 Present: Continued Optimization of the EZVI product


Technology Description

What is EZVI?

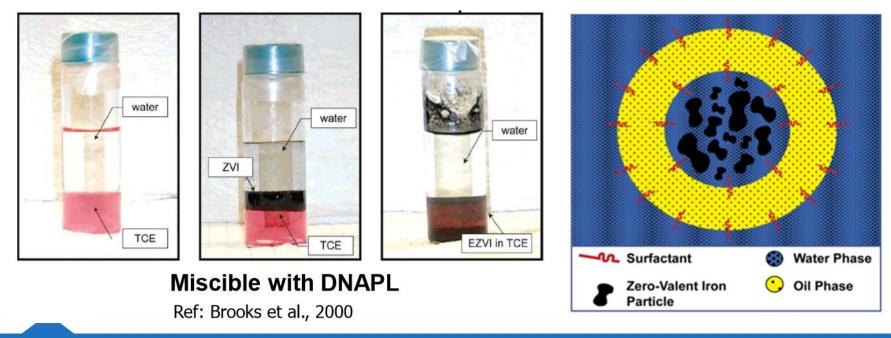
- Surfactant stabilized, <u>water-in-oil</u> emulsification with small micron (< 5 μm) ZVI particles suspended in the water drops.
- EZVI is a DNAPL (hydrophobic, sinker)



Technology Description

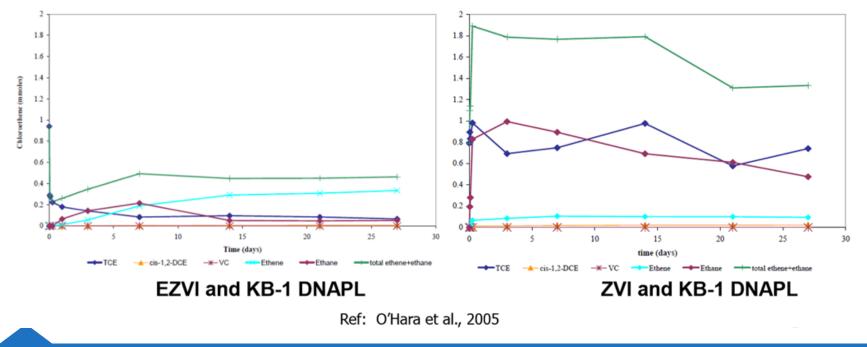
How does it work? -

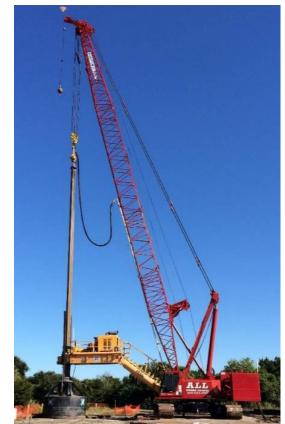
- Sequestration
- Dissolution
- Reductive dehalogenation (abiotic & biotic)


Emulsion **<u>Structure is KEY</u>**

Technology Description

What is the innovation?


- **Miscibility** with DNAPLs
- Combination Technology utilizing abiotic & biotic processes AND physical chemistry
- Emulsion <u>structure</u> is key


How is EZVI Unique? EZVI vs ZVI

- Due to sequestration step EZVI provides reduced Mass Flux
- Emulsion <u>structure</u> is key

Implementation

- Engineered as an *in situ* source area destruction technology
- Emplaced directly into source area soils
- Effective in <u>VADOSE</u> and <u>SATURATED</u> soils
- EZVI delivered via:
 - Pneumatic Enhanced IDS
 - Hydraulic & Pneumatic Fracturing
 - Soil Mixing

Copyright Provectus

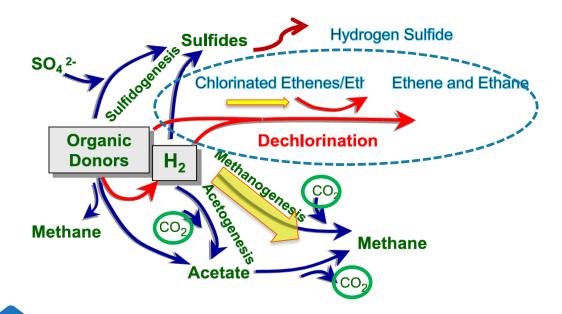
When is EZVI an option?

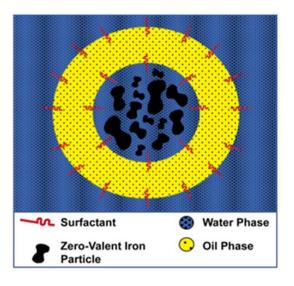
- DNAPL is present:
 - Parent compound(s) in $GW \ge 10\%$ of water solubility
 - The site is conducive to a reductive, *in situ* approach

How much do I need?

- Dosing is based on soil pore volume (not stoichiometry)
- Typical approach utilizes ~ 10% of available pore space

Is there a standard formulation?

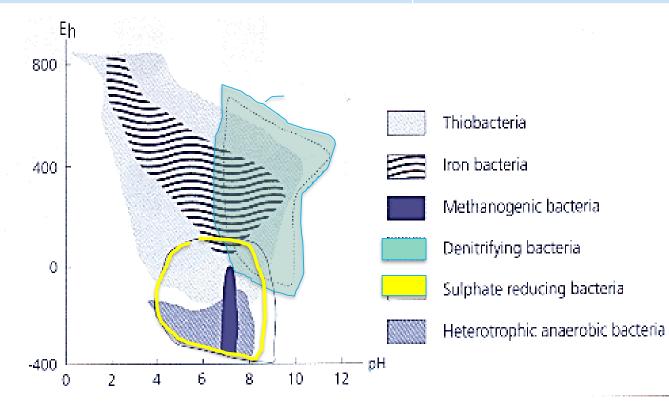

- Custom formulation is available
- Typical formula contains 10% ZVI (wt.%)


Technology Update – Hydrogen is the Currency

P

<u>Where Does it Go? = Cost and Efficiency Issues</u>: Methanogens dominate anaerobic ecosystems and they can hinder dechlorination by competing for H_2 with dechlorinating bacteria (Yang and McCarty, 1998; yellow arrows modified by Provectus).

Optimizing Biological Processes



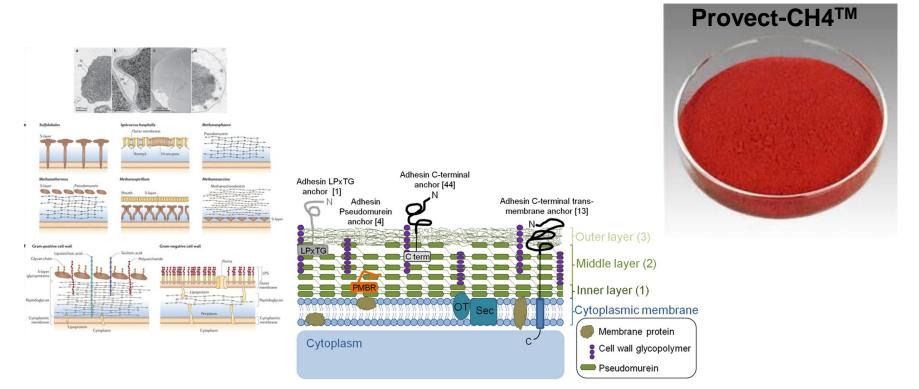
Technology Update – Idealized Eh pH Ranges for Microbial Growth

Microbe	Doubling Times	
Dehalococcoides spp.	24 to 48 hours	
Methanogens with cytochromes	10 hours	
Methanogens without cytochromes	1 hour	

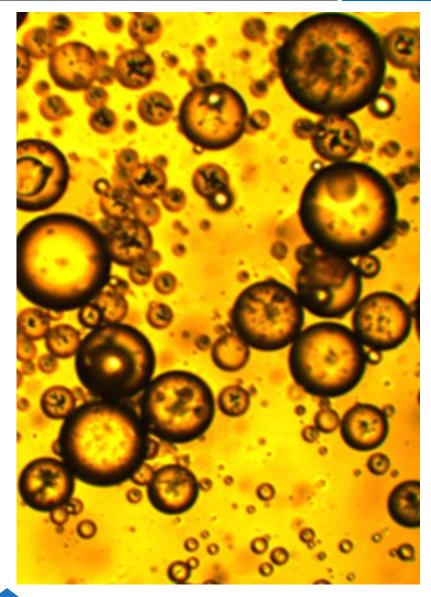
Zajic, 1969. Sigma Aldrich

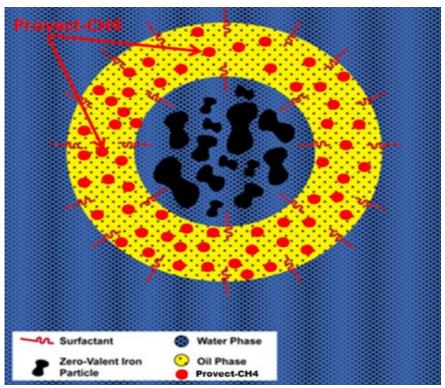
Technology Update – What is The Problem With

Methanogens?


Cost and Efficiency Issues: Production of methane is a direct indication that hydrogen generated from the electron donor amendments was used by methanogens instead of the target microbes (*e.g., Dehalococcoides spp.*), substantially reducing application efficiency.

Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Acceptor In Treatment Area
Contaminant Electron Acceptors (To E	nd Product Ethene)	·		•••••••••••••••••••••••••••••••••••••••
Tetrachloroethene (PCE)	10.0	165.8	4	1,393
Trichloroethene (TCE)	7.0	131.4	3	364
cis-1,2-Dichloroethene (cDCE)	0.0	96.9	2	0
Vinyl Chloride (VC)	0.0	62.5	1	0
	Complete Dechlorin	ation (Soil+Grou	ndwater) Subtotal	1,757
Native Electron Acceptors				
Dissolved Oxygen	9.0	32	2	199
Nitrate (as Nitrogen)	9.0	62	3	682
Sulfate	50.0	96.1	4	736
Fe ⁺² Formation from Fe ⁺³	20.0	55.8	0.5	63
Mn ⁺² Formation from Mn ⁺⁴	10.0	54.9	1	64
Baseline Geochemistry Subtotal				1,745
Hydrogen Waste for Methane Formatio	n			
Methane Formed	20.0	16	4	1,769
	Initial Treat	ment Area Hy	drogen Usage	5,271


Even in a highly oxidized setting with relatively high total concentrations of PCE and TCE, generating just 20 mg/L of methane constitutes greater than 33% of the total amendment consumption based on moles of H₂.


Technology Update – How Do We Control

- Methanogens?
- Methanogens are genetically unique Archaea
- Utilizing naturally occurring statins (RYR Extract) and select essential oils/saponins to disrupt enzyme and coenzyme processes unique to methanogens

Technology Update - EZVI-CH4[™] Reduced Methane *in situ* DNAPL Remediation Technology

New product - EZVI-CH4[™]

Research & Development

Enhancing Product Implementability

EZVI Viscosity:

- Can be an issue for subsurface injections:
 - NASA patented formulation = ~ 1,200 1,900 cP
 - Provectus' low viscosity formulation = $\sim 500 600 \text{ cP}$
 - R&D into viscosity adjustment is ongoing

Technology Update

Research & Development

Optimizing Abiotic Processes

Reactivity:

- Enhance the reactivity of the micelle interior
 - ZVI surface passivation
 - Electron transfer processes

Emulsion Stability:

 Manage interior pH levels to prevent destabilization of emulsion

<u>Cost</u>

• Varies based on product formulation and soil pore volume

Benefits

- Directly destroys halogenated contaminant source (DNAPL)
- Controlled methanogenesis with EZVI-CH4[™]
- Effective in VADOSE soils
- Combination technology utilizes abiotic & biotic processes
- Utilizes contaminant physical chemistry to provide significant reduction in source area <u>MASS FLUX</u>

Summary

Newest Advancements to the EZVI technology:

- EZVI-CH4[™]: In-situ DNAPL destruction with controlled methanogenesis and lower viscosity (~ 550 cP)
- The **STRUCTURE (water-in-oil type)** of the EZVI emulsion is key for the technology to perform as patented
- Upcoming Advancements: Ongoing R&D includes optimization of chemistry on the interior of the emulsion to include pH stabilization and enhanced reactivity to expand the scope of treatable contaminants

P

BOOTH 224: Provectus Environmental Products, Inc.

