

Technology for Inhibiting Methanogenesis during *In Situ*Sediment Treatment

Jim Mueller – Freeport, IL jim.mueller@provectusenv.com

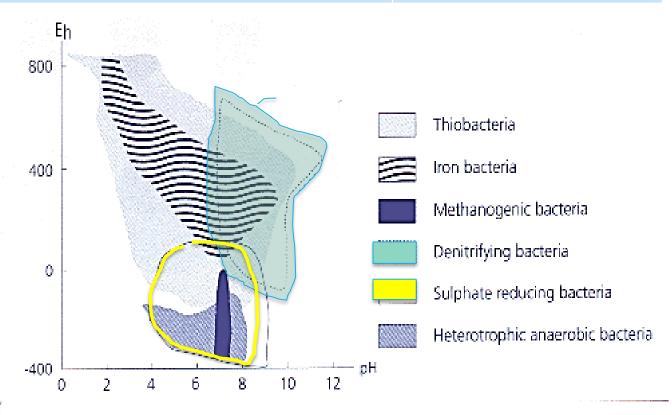
John Hull – Toledo OH jhull@aquablok.com

P

Presentation Outline

- How do Methanogens Impact Sediment Capping?
 - Methanogens are ubiquitous and grow rapidly when stimulated
 - Methane induces contaminant migration and can breach caps
 - Methanogens can methylate heavy metals (Hg, As, Sn, etc)
- - AquaBlok® In Situ Sediment Capping Technology
 - Engineering designs to control methane and COI migration
 - Provect-CH4™ Methanogen Inhibitor
 - AquaBlok-CH4™ Antimethanogenic Sediment Cap
- ◆ Case Study (Example Field Application)
- Conclusions

What is a Methanogen?

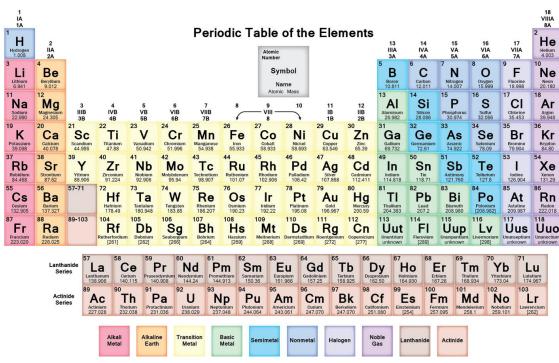

- Methanogens are microorganisms that produce methane
- Methanogens are Archaea (Woese and Fox, 1977) and hence, from a genetic perspective, *Dehalococcoides ethenogenes* are as different from methanogens as you are.
- Methanogens are often dominant as compared to DHC spp. and acetogens: averaging 2% to 15% of all soil microbes (Bates, et. al., 2011)
 - Even at biostimulated populations of DHC rising to >10⁸ cells/L Archaea populations can be orders of magnitude greater in number
- Methanogens are important members of synergistic, fickle anaerobic communities = we need some

Idealized Eh pH Ranges for Microbial Growth

Microbe	Doubling Times
Dehalococcoides spp.	24 to 48 hours
Methanogens with cytochromes	10 hours
Methanogens without cytochromes	1 hour

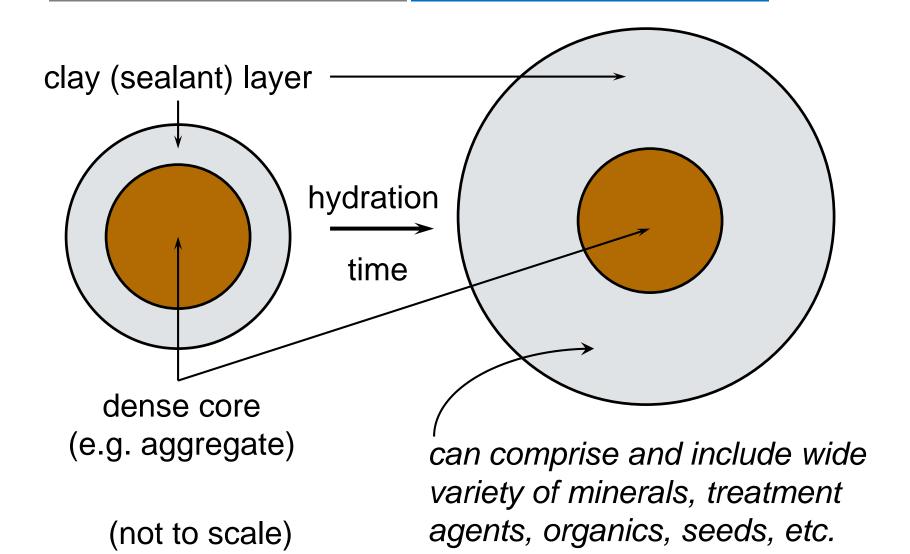
Issues with Methane Generation

- ◆ Typically there is a short term stimulation of methanogenic /microbial activity as a result of disturbing sediments, etc
- ♦ Methane gas ebullition causes cap breaching and induced migration = sheen
- Can result in the generation of methylmetal(loids)

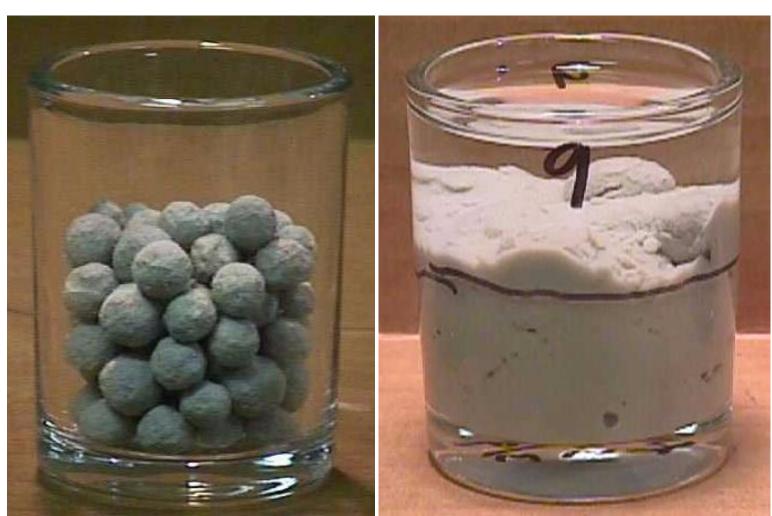

Biomethylation of Heavy Metals

- ♦ With the possible exception of Pb almost all Group IV, V and VI elements can be biomethylated (Bentley and Chasteen, 2002).
- ♦ Methylmetal(loids) are usually volatile and more toxic than their inorganic counterparts due to increased water solubility and hydrophobicity (e.g., methylmercury).
- ♦ Microorganisms are primarily responsible for the biosynthesis of organo-metals (Challenger, 1945), and the activity of methanogens is a main source of their production (Michalke, et al., 2006).

Volatile methylmetal(loids) may produced by Growing Cultures of Methanogens (Archaea).


* As, Hg, Sn and Pb are of particular interest

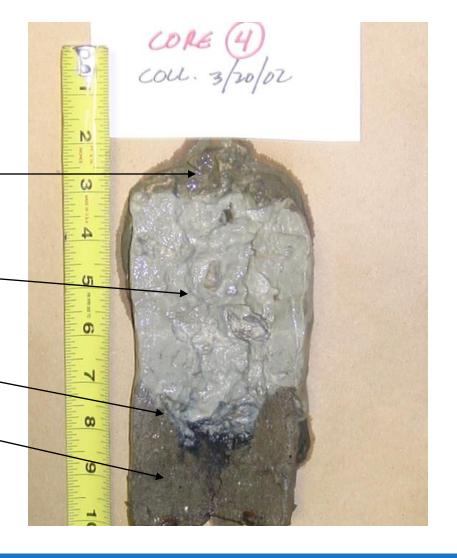
AquaBlok® In Situ Capping Technology



AquaBlok Placement Methods

Basic Product Behavior in Water

Recontamination is Not Due to Flux Through the Cap


Split-core from Section A (2.5 yrs after placement)

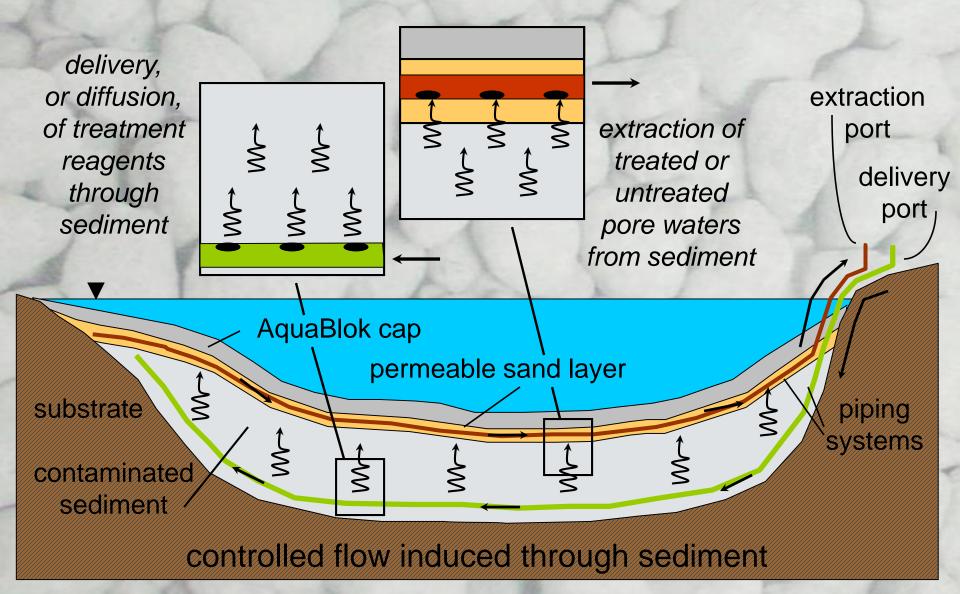
New sediment Deposits

AquaBlok Clean Cap Layer

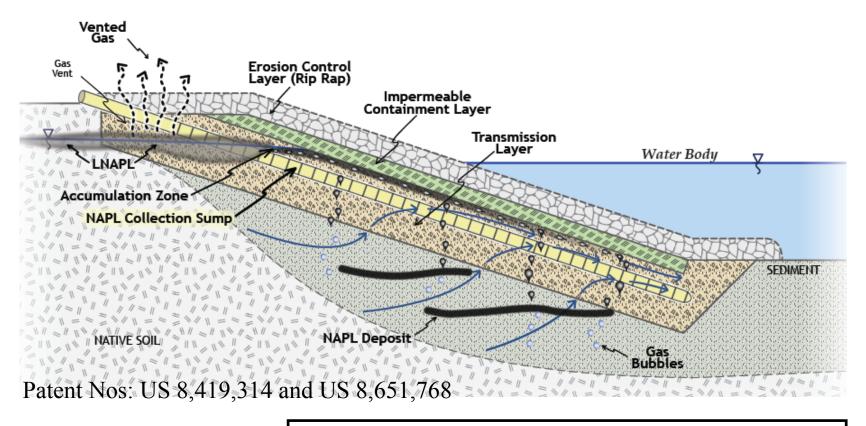
Discrete boundary

Contaminated Sediment

Issues with Methane Generation



- ◆ Typically there is a short term stimulation of methanogenic /microbial activity as a result of disturbing sediments, etc
- ♦ Methane gas ebullition causes cap breaching and induced migration = sheen
- Can result in the generation of methylmetal(loids)


Facilitating In Situ Sediment Treatment

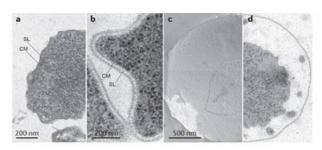
(not to scale)

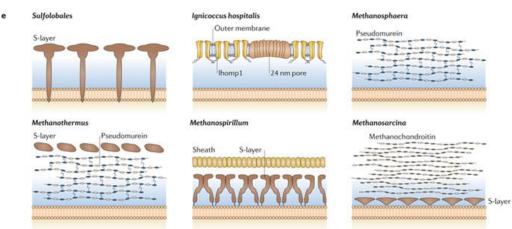
Conceptual Design - NAPL Trapping Cap

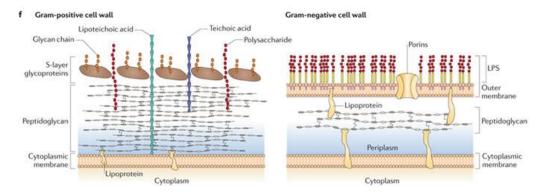
A sediment capping system made of geological materials (clay, sand, gravel, boulders) that can be used to capture NAPL permanently and predictably as it migrates from sediments

Provect-CH4™ Methane Inhibitor

- P
- Proprietary combination of Red Yeast Rice (RYR) extract specially prepared for the environmental industry
- Cold water soluble powder that is safe and easy to handle
- Packaged and sold in 55.1 lb (25 kg) drums
- Used as an ERD Supplement; component to ABC-CH4[™], Provect-IR[™],
 Provect-IRM[™], EZVI-CH4[™] and AquaGate-CH4[™]
- Multiple patents pending

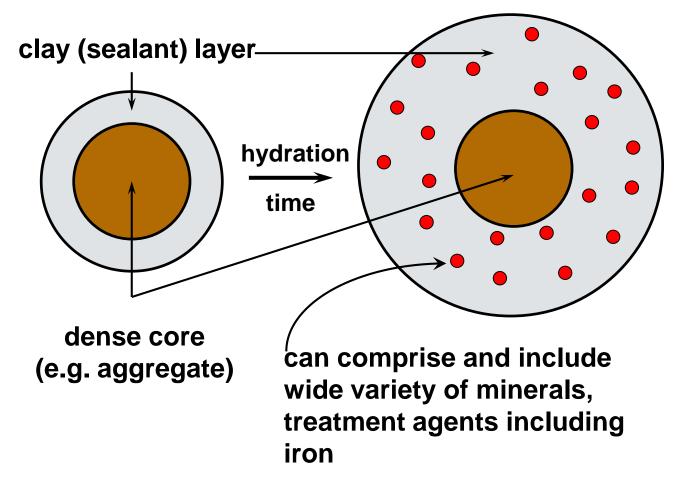




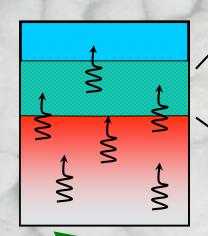


Provect-CH4 will Control Methanogens

- Bacteria cell walls contain peptidoglycan (murein).
- Methanogens cell walls contain pseudomurein.
- biosynthesized via activity similar to that of 3-hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme in the cholesterol biosynthesis pathway in humans (Alberts et al., 1980).



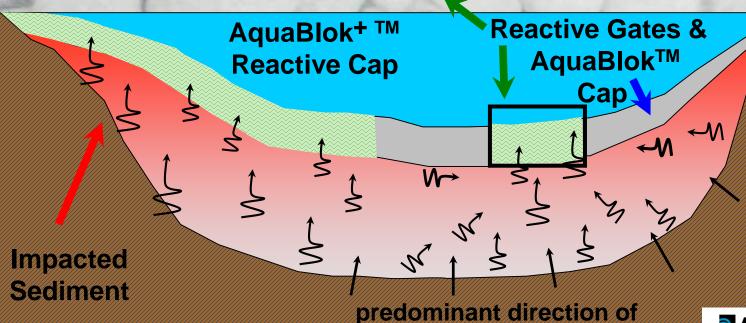
AquaGate-CH4™ Particle



Horizontal Reactive Barrier (hPRB) for In Situ Sediment Treatment

Contiguous Reactive Cap or funneling of

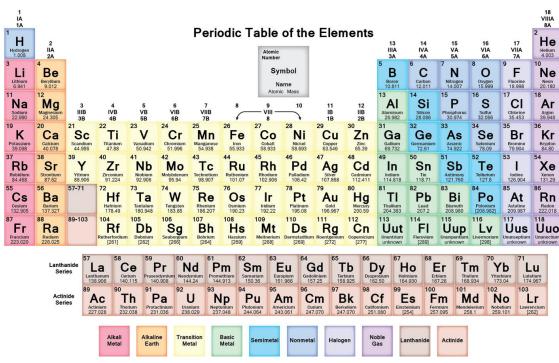
contaminant-bearing sediment pore waters beneath low-permeability cap through


Reactive Gates

ground water flow

higher-permeability treatment "gates" (includes reactive medium, ZVI, buffering agents, microbes, or other materials)

AquaBlok


Biomethylation of Heavy Metals

- ♦ With the possible exception of Pb almost all Group IV, V and VI elements can be biomethylated (Bentley and Chasteen, 2002).
- ♦ Methylmetal(loids) are usually volatile and more toxic than their inorganic counterparts due to increased water solubility and hydrophobicity (e.g., methylmercury).
- ♦ Microorganisms are primarily responsible for the biosynthesis of organo-metals (Challenger, 1945), and the activity of methanogens is a main source of their production (Michalke, et al., 2006).

Volatile methylmetal(loids) may produced by Growing Cultures of Methanogens (Archaea).

* As, Hg, Sn and Pb are of particular interest

Illegal Gold Mining – Latin America

Safe Search

A massive gold mining zone in eastern Peru has turned thousands of acres of rain forest into wastelands. This strip of mining in La Pampa is 5 miles wide and 40 miles long.

Jason Beaubien/NPR

www.npr.org/sections/goatsandsoda/2015/05/17/398765777/who-did-this-to-perus-jungle

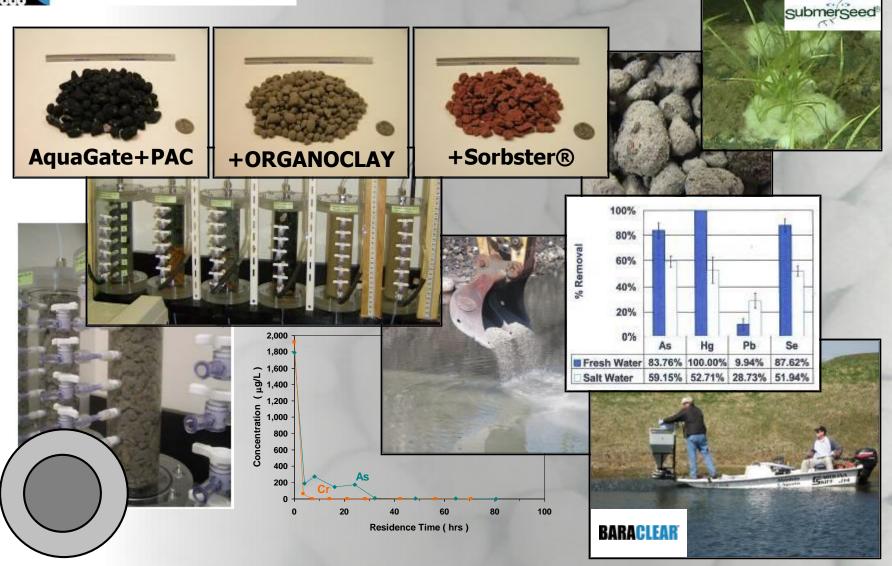
Safe Search THIS PAGE IS SHARE VIA FACEBOOK

↓ Download
〈 Embed
☐ Transcript

An aerial photo shows the environmental destruction in the wake of illegal gold mining in the Peruvian Amazon.

Courtesy of Gregory Asner, Carnegie Institution for Science

Mercury Contaminated Sediments



In-Situ Treatment & Biological Applications

Reactive AquaGate Materials

Contaminant	Treatment Materials
PAHs, BTEX, PCBs	Activated Carbon, Oxygen Delivery, Rubber
Gasoline	Oxygen Delivery, Nutrients
CVOCs	ZVI*, Provect-IR*, Bimetallic, A/C
Metals, Ammonia	ZVI*, Provect-IRM*, Organic Carbon, Zeolites, Ferric Sulfides, A/C
Acid Mine Drainage	Provect-IRM*, Organic Carbon
Nitrate	Provect-IR*, Organic Carbon
Methane control – all COIs	Provect-CH4 TM

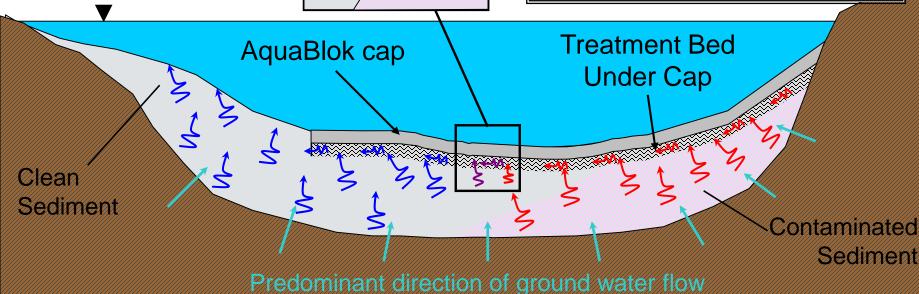
^{*} Provectus Environmental Products

P

Site Location: *U.S. EPA Region 2*Confidential Site – New York State

- Setting/Purpose: Canal/River (freshwater). MGP Site – PRB and low permeability barrier/cap over contaminated sediments. Site area was approximately 4,000 square feet.
- Contaminant(s) of Concern: Coal Tar associated with historic MGP site, including PAH (polynuclear aromatic hydrocarbons) and DNAPL (Dense Non-Aqueous Phase Liquids).
- AquaBlok Cap Design/Site Area: Multilayer design comprised of a one inch basal layer AquaBlok+ORGANOCLAY PRB covered with a hydrated layer (~6 inches in target thickness) of AquaBlok 3070FW. The cap was then armored with a two-inch layer of AASHTO #2 stone.
- Method of AquaBlok Placement: Shorebased excavator

Example of Sheen



Key Objectives:

- No Localized Breakthrough
- Relatively Long Contact Time for Organoclay

Funneling of Contaminant bearing sediment pore waters are directed beneath a low-permeability cap through a higher-permeability treatment layer that is below the cap

Higher-Permeability Treatment Zone (Gate – includes organoclay or other materials)

not to scale

Placement of Low-Permeability Cover Layer & Armor Stone

Completed AquaBlok Cap with Armor Stone

AquaBlok Cap Following Spring

Summary

- A variety of treatment materials are available to effectively reduce bioavailability of contaminants in sediments.
- Funnel and reactive gate technology provides:
 - isolation of contaminated sediment
 - treatment of contaminated sediment pore water
 - better protection of uncontaminated water bodies and aquifers than sediment removal or non-reactive caps
- Technology is applicable to:
 - contaminated sediments
 - contaminated groundwater discharging into water bodies
 - contaminated water bodies recharging groundwater
 - wide range of contaminants

Cost Factors

- Location
- Size of Area
- Desired Thickness of (hydrated) Layer
- Contaminant Capping/Treatment Strategy
- Sediment Layer Thickness / Consolidation
- Energy Level of Site
- Access to Installation Area
- Slopes/Stabilization

Order of Magnitude Cost:

Std. AquaBlok: \$1.50 – 4.50 / SF for Material & Installation

\$110 – 250 / US Ton (Based on 85lb/CF Bulk Density)

Positions Available....

- Hydrogeologists
- Geologists
- **♦** Engineers
- Microbiologists
- Environmental Scientists
- Business Development
- Sales & Marketing

A Career – not just a job

Microsoft..... Google...... Provectus

