

Innovative Environmental Technologies, Inc.

"Safer, More Effective ISCO Remedial Actions Using Non-Extreme Persulfate Activation to Yield Sustained Secondary Treatment"

> Wade Meese, Vice President Innovative Environmental Technologies, Inc. Sunbury, OH 43074 740-965-6100 www.iet-inc.net

Overview of ISCO Technologies

- Oxidizing agents
- Recognized effectiveness
- General chemistries of reactions

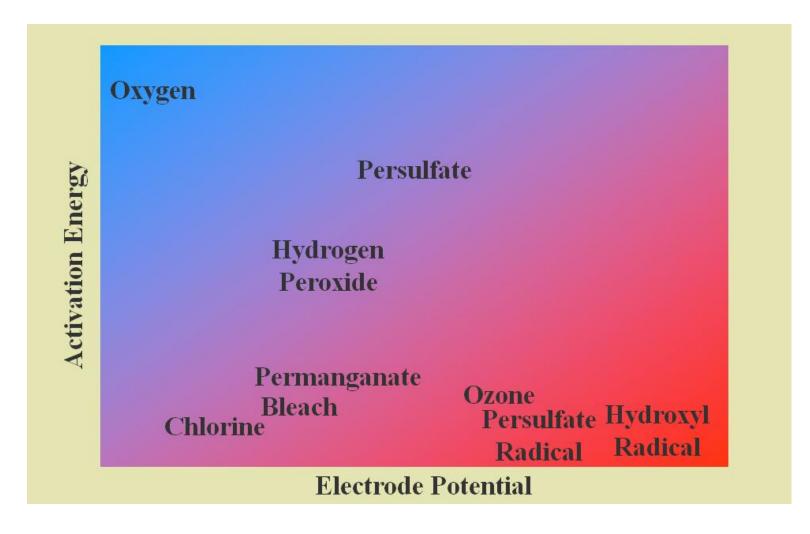
Use of Persulfate for ISCO Treatment

- Mode of Action
- Limitations of convectional activation technologies

Provect-OX™ Self-Activating ISCO/Enhanced Bioremediation

- ISCO Mode of Action
- Biological Mode of Action
- Potential advantages
- Case Studies

Conclusions


- ISCO involves:
 - Injection of an oxidizing agent into the subsurface to destroy organic compounds.
 - The by-products for complete mineralization include carbon dioxide (CO_2), water (H_2O) and oxygen (O_2).

• Goal is to mineralize or transform contaminants of concern (COCs)

Oxidant	Potential (V)	Form
Fenton's Reagent (OH·)	2.80	Liquid
Activated Persulfate (SO ₄ -)	2.60	Salt/Liquid
Ferrate (Fe ⁶⁺)	2.20	
Ozone (O ₃)	2.07	Gas
Persulfate (S ₂ O ₈ ²⁻)	2.01	Salt/Liquid
Hydrogen Peroxide (H ₂ O ₂)	1.78	Liquid
Permanganate (MnO ₄ -)	1.68	Salt (KMnO ₄) Liquid (NaMnO ₄)

Ozone (No Activator)

$- O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	E _o =2.07 V
 Hydroxyl Radical 	
• $O_3 + H_2O \rightarrow O_2 + 2OH^2$	
• $2O_3 + 3H_2O_2 \rightarrow 4O_2 + 2OH^2 + 2H_2O^2$ • $2OH^2 + 2H^2 + 2e^2 \rightarrow 2H_2O^2$	E ₀ =2.76 V
Persulfate (Requires Activation)	
$- S_2 O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	E ₀ =2.01 V
$-S_2^2O_8^{2-} \rightarrow 2(SO_4^{-})^{-1}$	E _o =2.50 V
Hydrogen Peroxide (Requires Activation)	
$- H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	E _o =1.77 V
$- H_2^2 O_2^2 \rightarrow 2OH^{-}; 2OH^{-} + 2H^{+} + 2e^{-} \rightarrow 2H_2O$	E _o =2.76 V
Permanganate (No Activator)	
$- MnO_4^{-} + 4H^{+} + 3e^{-} \rightarrow MnO_2 + 2H_2O$	E ₀ =1.70 V
• K ⁺ , Na ⁺	U

Accepted Oxidizing Techniques for Specific COCs

Oxidant	Amenable VOC's	Reluctant VOCs	Recalcitrant VOCs	Limitations
Peroxide, Old Fenton's	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA	DCA, CH ₂ Cl ₂	TCA, CT, CHCI $_3$	Stability (25-95% decomp/hr), low pH
Peroxide, New Fenton's	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA	DCA, CH ₂ Cl ₂ ,TCA, CT, CHCl3		Stability (10-50% decomp/hr)
Potassium Permanganate	PCE, TCE, DCE, VC, TEX, PAH	МТВЕ, ТВА	TCA, CT, B, CHCl ₃ , DCA, CB, CH ₂ Cl ₂	Soil oxidant demand
Sodium Permanganate	PCE, TCE, DCE, VC, TEX, PAH	MTBE, TBA	TCA, CT, B, CHCl ₃ , DCA, CB, CH ₂ Cl ₂	Soil oxidant demand
Sodium Persulfate, Fe	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA	DCA, CH ₂ Cl ₂ , CHCl ₃	ТСА, СТ	Stability (10-25% decomp/wk), low pH
Sodium Persulfate, Base	All VOCs			Stability (10-25% decomp/wk), NaOH costs
Sodium Persulfate, Heat	All VOCs			Stability (10-50% decomp/day), low pH, heating costs
Ozone	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA		DCA, CH ₂ Cl ₂ , CHCl ₃ , TCA, CT	Mass Delivery, Volatilization

Divalent Metal Activation

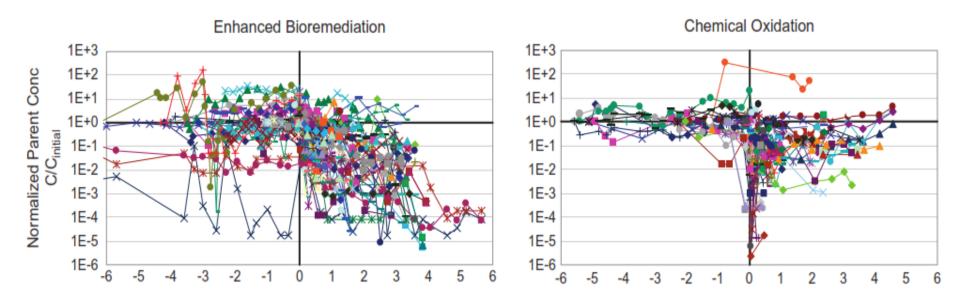
- Oxidant consumption during conversion of ferrous iron to ferric iron
- Inhibition of biological utilization of the generated ferric species (EDTA)
- High oxidant consumption due to overdosing of the ferrous chelated iron

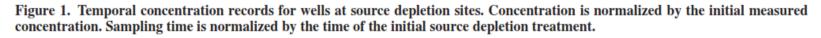
<u>Caustic Activation</u>

- Significant health and safety issues
- Unsuitably high (extreme) pH environment for biological attenuation
- Self-limiting biological attenuation process due to hydrogen sulfide generation

Heat Activation

- Difficult Implementation
- High Cost
- Elevated hydrogen sulfide production

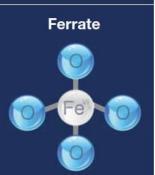

Hydrogen Peroxide Activation


- Limited efficacy on many targeted compounds
- Elevated hydrogen sulfide production
- Produces heat and (excessive) gassing which can lead to surfacing issues

The ISCO reactions are short lived

- Ozone (minutes to hours) Fenton's (hours to days) Persulfate (days to weeks) Permanganate (months).
- The ISCO process can enhance COC desorption
- Lack of secondary treatment mechanism mandates subsequent treatments

ferrate


Provect-OXTM = Sodium Persulfate + Ferric Oxide (Fe_2O_3)

- Chemical Oxidation via Sulfate (SO₄•) Radical
- Chemical Oxidation via Ferrate (Fe^{6+•}) Radical

2 Fe³⁺ + 3 OCl⁻ + 4 OH⁻ \rightarrow 2 FeO₄²⁻ + 3 Cl⁻ + 2 H₂O S₂O₈²⁻ + ACTIVATOR [Fe³⁺] \rightarrow SO₄⁻• + e⁻ \rightarrow SO₄²⁻• S₂O₈²⁻ + Fe³⁺ -----> Fe^(4+ to 6+) + SO₄²⁻ + SO₄²⁻•

Dxidation Potentials	Volts	
Fluorine (F ₂)	2.87	and the second se
Hydroxyl radical (OH●)	2.80	
Persulfate radical (SO₄●)	2.60	
Ferrate (Fe ⁺⁶)	2.20	
Ozone (O ₃)	2.08	
Persulfate $(S_2O_8^{-2})$	2.01	
Hydrogen peroxide (H ₂ O ₂)	1.78	permanganate
Permanganate (MnO ₄ -)	1.68	
Chlorine (Cl ₂)	1.49	

https://sites.google.com/site/ecpreparation/ferrate-vi

- Persulfate is activated by Fe(III) requiring lower activation energy than alternative mechanisms
- No consumption of persulfate oxidant
- Elevation of iron oxidation state to a supercharged iron ion (ferrate species) which can itself acts as an oxidant
- The supercharged iron cation consumption results into ferric species that act as a terminal electron acceptor for biological attenuation
- The generated sulfate ion from the decomposition of the persulfate acts as a terminal electron acceptor for sulfate reducers

Sulfate Reduction

- After dissolved oxygen depletion sulfate is used as an electron acceptor for anaerobic biodegradation by indigenous microbes (sulfidogenesis)
- Stoichiometrically, 1.0 mg/L of sulfate consumed by microbes results in the destruction of approximately 0.21 mg/L of BTEX compounds
- Sulfate acts as an electron acceptor in co-metabolic processes during bioremediation of petroleum products
- Basic reactions for the mineralization of benzene and toluene under sulfate reducing conditions:

 $C_6H_6 + 3.75 SO_4^{2-} + 3 H_2O --> 0.37 H^+ + 6 HCO_3^- + 1.87 HS^- + 1.88 H_2S^-$

 $C_7H_8 + 4.5 SO_4^{2-} + 3 H_2O --> 0.25 H^+ + 7 HCO_3^- + 2.25 HS^- + 2.25 H_2S^-$

Ferric Iron Reactions

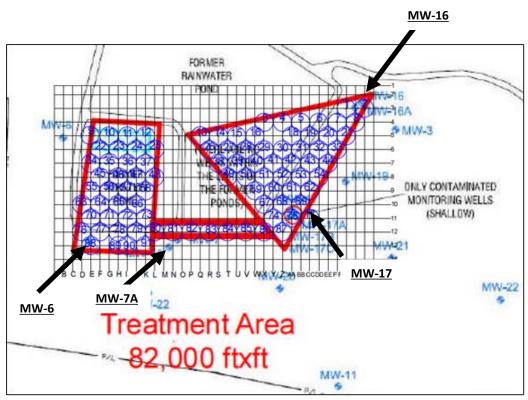
- Ferric iron used as electron acceptor during anaerobic biodegradation of contaminants
- Stoichiometrically, the degradation of 1.0 mg/L of BTEX results in the average consumption of approximately 22 mg/L of ferric iron

 $C_6H_6 + 18 H_2O + 30 Fe^{3+} ----> 6 HCO_3^- + 30 Fe^{2+} + 36 H^+$ $C_7H_8 + 21 H_2O + 36 Fe^{3+} ----> 7 HCO_3^- + 36 Fe^{2+} + 43 H^+$ $C_8H_{10} + 24 H_2O + 42 Fe^{3+} ----> 8 HCO_3^- + 42 Fe^{2+} + 50 H^+$

- Ferric iron is reduced to Ferrous iron, which is soluble in water
- Ferrous iron is oxidized to Ferric iron and the iron cycling provides sustained secondary bioremediation via one electron transfer reactions (Weber *et al*, 2006)

Pyrite Formation

- Sulfate residual is utilized as terminal electron acceptor by facultative organisms thereby generating sulfide
- The ferrous iron and the sulfide promote the formation of pyrite as a remedial byproduct
- This reaction combats the toxic effects of sulfide and hydrogen sulfide accumulation on the facultative bacteria
- Provides a means of removing targeted organic and inorganic COIs via precipitation reactions
- Pyrite possesses a high number of reactive sites that are directly proportional to both its reductive capacity and the rate of decay for the target organics


- Safely catalyzed process without the Hazards of Extreme Activators Caustics
- Can be provided pre-mixed in one bag
- Safely distributed in the field
- No Heat Generated minimizes gassing and surfacing issues
- Uses Fe³⁺ as activator (<u>no persulfate "Master Supplier"</u>)
- Conserves Oxidant Unlike other Persulfate Activators
- Multiple ISCO processes via formation of reactive ferrate species
 = better ISCO
- Enhances bio attenuation utilizing both iron and sulfate reduction
- Encourages the formation of pyrite / Prevents H₂S formation
- Long-lived reactions sustained treatment manages rebound
- Cost-effective <u>reduces need for multiple injection events</u>

- Single injection event at a wood treating facility in Midwestern United States in July 2013 to remediate soils and groundwater impacted by the historical release of heavy ended petroleum compounds.
- Total treatment area of approximately 82,000 square feet, treating between 13 and 22 feet below ground surface.

- Spaced 34 ft apart
- > 22,022 lbs of Provect-OX

Injection Equipment

IET 20' MOBILE INJECTION SYSTEM

Injection Feed Tank - Configuration

Feed Systems, Safety Systems, Compressed Gas Systems All piping Welded Stainless Steel Floors Coated in Chemical Resistant RinoLining

Case Study 1 - Groundwater SVOC Analytical Data

Table 1. VOC Data for MW-6 (µg/L).

MW-6								
Sampling Date 07/2013 10/2013 01/2014 04/2014								
Benzo(a)pyrene	17,000	ND	ND	ND				

ND: Not Detected

Table 2. VOC Data for MW-7A (µg/L).

MW-7A							
Sampling Date 07/2013 10/2013 01/2014 04/2014							
Benzo(a)pyrene	18,000	ND	ND	ND			

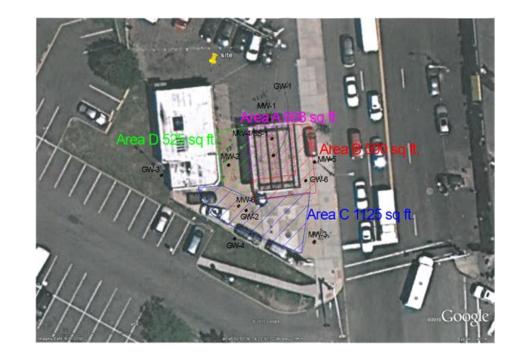
ND: Not Detected

Table 3. VOC Data for MW-16 (µg/L).

MW-16							
Sampling Date 07/2013 10/2013 01/2014 04/2014							
Benzo(a)pyrene	20,000	ND	ND	ND			

ND: Not Detected

Table 4. VOC Data for MW-17 (µg/L).


MW-17							
Sampling Date07/201310/201301/201404/2014							
Benzo(a)pyrene	19,000	ND	ND	ND			

ND: Not Detected

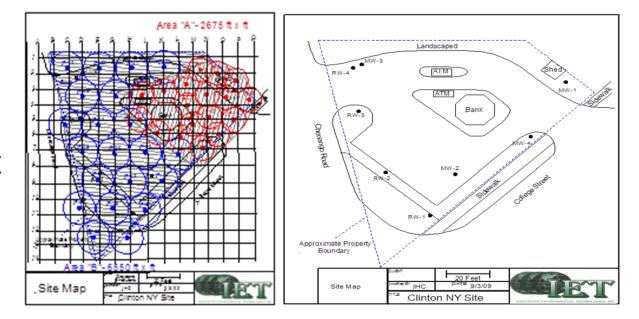
- Single injection event implemented at a former gas station in Northern New Jersey in August 2013 to remediate soils and groundwater impacted by the historical release of BTEX compounds.
- Total treatment area of approximately 3,100 square feet, treating between 4 and 14 feet below ground surface.

- > 26 injection points
- Spaced 8-10 ft apart
- ➤ 4,392 lbs of Provect OX

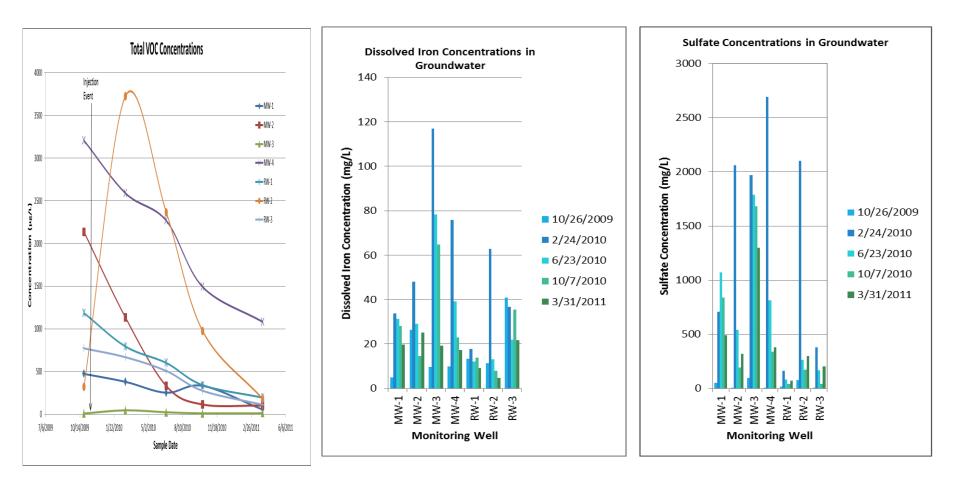
Case Study 2 – Field Parameters & VOC Analytical Data

			MW-2		
Sampling Date	06/20/2013	10/02/2013	11/26/2013	02/28/2014	05/28/2014
рН	7.27	6.88	6.89	6.86	7.43
ORP (mV)	-14	+220	+86	+55	-40
D.O. (mg/L)	2.17	0.76	0.90	0.85	0.83
Conductivity (mS/cm)	0.97	3.44	1.52	2.38	1.55
Temperature (°C)	17.7	20.4	17.0	12.2	14.3
Groundwater Elevation (ft)	94.05	90.43	88.86	92.93	93.70
Sulfate (mg/L)	56.6	1,510	266	980	332
Total Iron (mg/L)	0.377	2.01	0.149	0.089	0.160
Dissolved Iron (mg/L)	0.249	1.83	0.0097	ND	ND

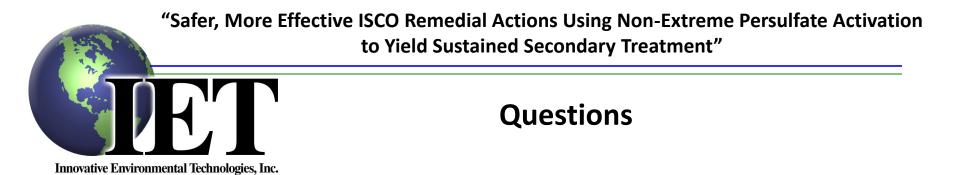
	MW-2								
Sampling Date	06/20/2013	10/02/2013	11/26/2013	02/28/2014	05/28/2014				
Benzene (ppb)	ND	7.20	43.4	ND	ND				
Toluene (ppb)	ND	2.33	0.38	ND	ND				
Ethylbenzene (ppb)	ND	4.08	ND	ND	ND				
Total Xylenes (ppb)	ND	21.04	3.16	ND	ND				


Case Study 2 – Field Parameters & VOC Analytical Data

	MW-5						
Sampling Date	06/2013	10/2013	11/2013	02/2014	05/2014	09/2014	12/2014
рН	6.78	6.71	6.68	6.71	6.49	6.95	6.68
ORP (mV)	-23	+230	+180	+95	-68	-78	+118
D.O. (mg/L)	0.32	1.08	0.56	4.32	0.99	0.96	3.13
Conductivity (mS/cm)	1.05	1.24	2.00	4.61	2.57	1.89	2.01
Temperature (°C)	17.7	21.7	16.8	8.8	14.3	22.8	14.2
Groundwater Elevation (ft)	93.35	90.43	89.14	92.56	93.20	91.27	92.25
Sulfate (mg/L)	70.9	123.0	247.0	339.0	279.0	343.0	314
Total Iron (mg/L)	4.85	5.44	4.64	5.84	14.3	5.16	2.04
Dissolved Iron (mg/L)	3.53	3.24	3.22	3.91	12.0	4.26	0.35
				MW-5			
Sampling Date	06/2013	10/2013	11/2013	02/2014	05/2014	09/2014	12/2014
Benzene (ppb)	3.38	1.91	0.52	ND	1.27	ND	ND
Toluene (ppb)	1.71	0.21 J	0.16	ND	0.57	ND	ND
Ethylbenzene (ppb)	15.6	0.4 J	ND	ND	14.2	ND	ND
Total Xylenes (ppb)	25.94	1.98 J	0.37	ND	7.85	ND	ND


- Single injection event at a former gas station upstate New York to address soil and groundwater contamination due to the historical release of BTEX compounds.
- Total treatment area of 9,225 square foot area, treating between 9 and 15 feet below ground surface.

- 39 injection points
- Spaced 12-20 ft apart
- ➢ 8,006 lbs of Provect OX


Sulfate and Iron Utilized as Terminal Electron Acceptors to Sustain Bioremediation and Minimize Rebound

CONCLUSIONS

- Provect-OX[™] combines multiple ISCO and enhanced biological processes
- Safely catalyzed process without the Hazards of Extreme Activation
- No Heat Generated minimizes gassing and surfacing issues
- Uses Fe³⁺ as activator (<u>no persulfate "Mandated Supplier"</u>)
- Long-lived reactions sustained treatment manages rebound
- Demonstrated effectiveness under field conditions
- Cost-effective <u>reduces need for multiple injection events</u>

