
REVIEW ARTICLE

Recent electrochemical methods in electrochemical degradation
of halogenated organics: a review

Meng Zhang1
& Qin Shi1,3 & Xiaozhe Song1

& Hui Wang1
& Zhaoyong Bian2

Received: 11 September 2018 /Accepted: 7 February 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Halogenated organics are widely used in modern industry, agriculture, and medicine, and their large-scale emissions have led to
soil and water pollution. Electrochemical methods are attractive and promising techniques for wastewater treatment and have
been developed for degradation of halogenated organic pollutants under mild conditions. Electrochemical techniques are clas-
sified according to main reaction pathways: (i) electrochemical reduction, in which cleavage of C-X (X = F, Cl, Br, I) bonds to
release halide ions and produce non-halogenated and non-toxic organics and (ii) electrochemical oxidation, in which halogenated
organics are degraded by electrogenerated oxidants. The electrode material is crucial to the degradation efficiency of an electro-
chemical process. Much research has therefore been devoted to developing appropriate electrode materials for practical appli-
cations. This paper reviews recent developments in electrode materials for electrochemical degradation of halogenated organics.
And at the end of this paper, the characteristics of new combination methods, such as photocatalysis, nanofiltration, and the use of
biochemical method, are discussed.

Keywords Halogenated organics . Electrochemical reduction . Electrochemical oxidation . Combined techniques .

Photoelectrochemistry . Electrodematerials

Introduction

In recent decades, with the rapid development of society and
economies, the problem of environmental pollution has be-
come increasingly serious. The intensification of industrial
and agricultural activities has inevitably caused severe environ-
mental pollution, with serious consequences for the atmo-
sphere, waters, and soils (McGrath et al. 2017). Many govern-
ments have introduced legislation to set and limit emissions of

pollutants in view of the rapid growth of public awareness of
environmental problems (Sires et al. 2014). In the mid-1990s,
the United Nations Environment Programme successfully
reached consensus on the production, use, and emissions of
persistent organic pollutants (POPs) (Rodan et al. 1999; Laine
and Cheng 2007). Halogenated organic compounds, also
known as organic halogens, are prevalent organic pollutants,
and many of them have been classified as POPs. For example,
various organochlorine insecticides, such as polychlorinated
biphenyls (PCBs), polybrominated biphenyl ethers (PBDEs),
and others, are used in the production of various commodities
(Laine and Cheng 2007; Atashgahi et al. 2018). PCBs, which
are widely and persistently present in the environment and
accumulate through the food chain from aquatic organisms to
fish and to humans, have adverse effects on various organisms
and human beings (Beyer and Biziuk 2009; Zhang and Kelly
2018). A survey in 2006 reported that a number of species, e.g.,
soleus and sardines, contained PCBs and PBDEs (Fernandes
et al. 2018). These compounds were also found in human milk
and serum (Jiang et al. 2018a). Chlorophenols (CPs) are widely
used in pesticides or to treat wood raw materials and have been
identified as priority pollutants (Zhou et al. 2014). Most of
them are recalcitrant, bactericidal, phytotoxic, and
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carcinogenic; they have been detected in ground and surface
waters, wastewaters, and soils (McGrath et al. 2017; Atashgahi
et al. 2018). It is speculated that increasing amounts of waste
waters containing CPs will be produced with continuing
growth in their use. There are other pesticides that cause envi-
ronmental pollution, such as Lindane, which is a common or-
ganochlorine pesticide and highly toxic and poses potential
health risks to humans and animals, persists in aquatic environ-
ments, and is difficult to biodegrade (Dominguez et al. 2018a).
Some halogenated organics have been found in the soil, con-
taminating the soil environment and posing great difficulties for
soil remediation (Rodrigo et al. 2018). Another example is
brominated compounds, which are present in natural water
bodies. When a water body is disinfected by a chemical meth-
od, bromine participates in the reaction to produce more com-
plex and toxic substances (Liu et al. 2018c; Zacs et al. 2018).
Most of the halogenated flame retardants are brominated flame
retardants, which include PBDEs. Long-term production of
halogenated flame retardants in Shandong Province in China
from 2007 to 2015 has led to large amounts of brominated com-
pounds, including pentabromobenzene and pentabromotoluene,
and PBDEs have been found in the sera of Shandong residents
(Li et al. 2017; Ma et al. 2017b). Some congeners of PBDEs,
such as 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47),
2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE-153), and
2,2′,4,4′,5-pentabromodiphenyl ether (BDE-99), affect thyroid
homeostasis, which causes endocrine disorders (Aznar-
Alemany et al. 2017; Ma et al. 2017a; Miller et al. 2017;
Glazer et al. 2018; Huang et al. 2018). Coddou et al. (2019)
reported that 5-(3-bromophenyl)-1,3-dihydro-2H-
benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) has a certain
influence on the central nervous system of mice.
Polybromobenzene is hepatoxic and has been found in the liver
of wild animals (Covaci et al. 2011). It can be seen that haloge-
nated organics have a negative impact on the environment and
endanger human health to a certain extent.

Many wastewater treatment techniques, e.g., incineration
(Matsukami et al. 2014; Roszko et al. 2015), adsorption
(Jiang et al. 2018b), biological methods (Kaczorek et al.
2016), and chemical methods (Tu et al. 2015; Cagnetta et al.
2016), have been developed for degrading halogenated organic
pollutants to avoid further risks to the environment. However,
many of these methods can produce toxic intermediates during
the degradation process, e.g., incomplete advanced oxidation
processes (Qi et al. 2018). For example, haloacetic acid and
other harmful substances are produced in the treatment of
wastewaters containing halogenated organics by ozone oxida-
tion (Wang and Wang 2007). Electrochemical techniques are
effective methods and have several advantages, namely mild
reaction conditions, high efficiency, quick responses, and low
cost; and the production of many of electrochemical techniques
that are non-toxic or low-toxic compounds except some elec-
trochemical oxidation techniques that produce halogenated

compounds when breaking the C-X bond depends on effluent
and the electrode material (Rodan et al. 1999; Wang and Wang
2007). Three main electrochemical procedures, classified ac-
cording to their reaction pathways, are discussed in this review:
electrochemical reduction and electrochemical oxidation.
Some other combined techniques were discussed in this review.
Figure 1 summarizes the electrochemical techniques used to
degrade halogenated organics. Electrochemical reduction in-
cludes direct electrochemical reduction and indirect electro-
chemical reduction. And electrochemical oxidation includes
direct electrochemical oxidation and indirect electrochemical
oxidation. The cathodic indirect oxidation, one of advanced
electrochemical oxidation processes, could be involved in in-
direct electrochemical oxidation. Combined techniques involve
the combination of electrochemical reduction and electrochem-
ical oxidation, namely electrochemical reduction-oxidation,
electro-Fenton (EF), photoelectrochemical oxidation (PEC),
and other combined techniques.

The electrode material has a variety of important roles in
electrocatalysis. The electrode surface is the electrochemical
reaction site and the location of the supply and reception of
electrons in any electrolytic system. The properties of elec-
trode materials, such as conductivity, significantly affect the
number of electrons that participate in an electrochemical re-
action. Their properties determine their suitability for different
electrochemical approaches. High electrocatalytic activity, a
long working lifetime, good physical and chemical stabilities
and electrical conductivity, low cost and ease of fabrication, a
large surface area with many active sites, and a wide operating
potential window between the hydrogen and oxygen evolu-
tion reaction overpotentials are the prerequisites for electrode
materials for use in electrochemical wastewater treatment.
There are many important reviews of electrode materials or
electrochemical techniques in different fields, such as decon-
tamination of wastewaters containing synthetic organic dyes
(Martinez-Huitle and Brillas 2009; Brillas and Martínez-
Huitle 2014), electrochemical oxidation of organic pollutants
(Martinez-Huitle and Ferro 2006), and the reduction of vat
dyes (Roessler and Jin 2003), but no review of the degradation
of halogenated organic pollutants by electrochemical methods
that involve both electrochemical oxidation and electrochem-
ical reduction has been published. This review focuses on the
development of electrode methods for the degradation of ha-
logenated organics. The mechanisms, degradation pathways,
and electrode materials used in electrochemical techniques for
degradation of halogenated organics are also discussed.

Reductive dehalogenation via
electrochemical reduction

In recent decades, electrochemical reduction has attracted in-
creasing attention because of its excellent performance in the
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reductive dehalogenation of halogenated organics.
Electrochemical reductive dehalogenation reactions have been
widely investigated for organic synthesis and environmental pol-
lution abatement, especially for the abatement of
polyhalogenated organic pesticides (Huang et al. 2017;
Shundrin et al. 2017). This method provides two effective ap-
proaches to cleaving C-X (X= F, Cl, Br, I) bonds: direct electro-
chemical reduction and indirect electrochemical reduction. The
nature of the electrode material determines which approach will
perform better during the electrolytic process. Electrochemical
oxidation can also be used to break the C-X bond, but it may
produce toxic by-products via undesired reactions. In order to
avoid undesired reactions, we added the cation exchange mem-
brane in the process of electrochemical reduction to reduce the
generation of toxic substances and completely remove all halo-
gen atoms. Also, halogenated organics are toxic mainly because
of the halogen atoms in their structures. Electrochemical reduc-
tion therefore has an advantage in destroying the toxicity of
halogenated organics. Non-halogenated intermediates or final
products are obtained by halogen atom removal.

A number of studies have explored appropriate cathode
materials, the dehalogenation mechanism and pathway, and
process optimization. An appropriate cathode material needs
many characteristics, such as high electrocatalytic activity,
long service lifetime, excellent selectivity, the ability to inhibit
side effects, excellent electron transfer capacity, good electro-
chemical stability, good conductivity, low cost, and ease of
preparation (Su et al. 2012; Zhang et al. 2018). The mecha-
nisms and pathways of dehalogenation of different halogenat-
ed organics have also been investigated to identify the inter-
mediates that may be produced during the electrochemical
reduction process. The general dehalogenation mechanism is
that electron transfer causes excessive negative charges at the
C-X bond, causing it to break, forming halide ions and free
radicals, and reacting with another electron and a proton to
form anM (metal)-H bond. Taking hexachlorobenzene (HCB)
as an example, the process of gradual dehalogenation was as
Eq. (1) shown (Páramo et al. 2006). Process optimization is

performed to obtain the highest dehalogenation efficiency.
Table 1 gives data for different cathodes used in the electro-
chemical reduction of various halogenated organics under a
range of conditions; the data were collected by surveying a
large number of literature reports.

C6Cl6
2e−;Hþ

−Cl−
→C6HCl5

2e−;Hþ

−Cl−
→C6H2Cl4

2e−;Hþ

−Cl−
→C6H3Cl3

2e−;Hþ

−Cl−
→

C6H4Cl2
2e−;Hþ

−Cl−
→C6H5Cl

2e−;Hþ

−Cl−
→C6H6

ð1Þ

Direct electrochemical reduction

Direct electrochemical reduction is a process that generates
direct electron exchange between the cathode and an organic
molecule on the cathode surface. Injection of one electron
from the cathode into a halogenated organic molecule leads
to fragmentation of a C-X σ bond (Bujes-Garrido et al. 2018).
Dehalogenation can occur via two different mechanisms, i.e.,
stepwise bond breaking (Eqs. (2) and (3)) or concerted elec-
tron transfer (Eq. (4)) (Muthukrishnan et al. 2012; Brillas and
Martínez-Huitle 2014).

RXþ e−⇋RX•− ð2Þ
RX•−→R• þ X− ð3Þ
RXþ e−→R• þ X− ð4Þ

Electron transfer competes with the hydrogen evolution
reaction. Cathode materials should therefore have high cata-
lytic activities to decrease the high overpotential, avoid hydro-
gen evolution, and contribute to dissociative electron transfer
to C-X bonds (Huang et al. 2012). These cathode materials
should therefore have not only the required basic characteris-
tics but also a distinct high hydrogen-evolution overpotential
when used in direct electrochemical reduction. Many cathode
materials have been well studied, including metals, carbon
materials, and hybrids based on active species.

Direct 
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Fig. 1 Electrochemical
technologies used for degradation
of halogenated organics
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The first thing to note is that Ag has received widespread
attention because of its excellent electrocatalytic activity in the
direct cathodic reduction of halogenated organics (Rondinini
et al. 2016; Bujes-Garrido et al. 2018). The electrocatalytic
activity of a Ag cathode is higher than those of glassy carbon
(GC), Cu, Pb, Pt, Ni, Fe, Pd, and Zn cathodes. Ag nanoparti-
cles give similar or even better performances than bulk Ag
(Lugaresi et al. 2014). Examination of the data in Table 1
shows that good results were obtained with this electrode ma-
terial when dealing with 1,2-dichloroethane (Scialdone et al.
2010a, b), 1,1′,2,2′-tetrachloroethane (Cl2HC-CHCl2)
(Scialdone et al. 2010b), trichloroacetic acid (TCA) (Xu
et al. 2012), 2,4,6-tribromophenol (Xu et al. 2007),
pentabromophenol (Xu et al. 2007), and Cl2HC-CHCl2
(Scialdone et al. 2010b), under corresponding experimental
conditions. This can be attributed to the strong interactions
between organic molecules and the Ag electrode, which make
Ag an excellent electrocatalytic material for direct electric
dehalogenation (Schröder et al. 2016). These interactions
weaken the C-X bond and decrease the dechlorination activa-
tion energy, which is associated with a positive shift of the
reduction potential (Jin and Ma 2013). However, the use of
Agwith some halogenated organics, such asmonochloroacetic
acid (Scialdone et al. 2014), pentachlorophenol (Xu et al.
2007), and ClH2C-CH2Cl (Scialdone et al. 2010b), gives a
low current efficiency or dehalogenation efficiency. The Ag
electrode may be less effective in the degradation of these
halogenated organics because of weak interactions between
these organic molecules and the Ag electrode. Ag is usually
deposited/fabricated as hybrids/alloys with other metals to im-
prove the effectiveness of the dehalogenation reaction, e.g.,
Au/Ag (Schröder et al. 2016), porous Ag-Pd thin foam
(PAPTF) (Jin and Ma 2013), and Pd/Ag/Ni (He et al. 2013).
For example, Pd components in a porous PAPTF prepared by a
rapid one-step electrodeposition method improve the electro-
catalytic performance in the reductive dechlorination of TCA,
but suppress it in high Pd contents (Jin and Ma 2013). The
chemisorbed H atoms were formed on the cathode surface; it is
attributed to the fact that H atoms is a powerful reducing agent
to reductive debromination. Also, the H atoms reacted with
halogenated organic matters of near the electrode surface to
change the C-Cl bond to C-H (Vodyanitskii 2014), maybe
because a low Pd content enables adsorption of hydrogen
atoms, which play the leading role in attacking chlorine and
Ag can weaken the C-Cl bond. The introduction of Ag or Cu
can induce exposure of a relatively large surface area. He et al.
(2013) obtained a more compact, uneven coating on the sur-
faces of Pd/Ag/Ni and Pd/Cu/Ni electrodes comparedwith that
on a Pd/Ni electrode. As a result, the Pd/Ag/Ni electrode
showed higher electrocatalytic activities and current efficien-
cies, which are attributed to the greater effective surface, a
more appropriate Ag-H bond energy, and a strong ability to
form bridged R-X-Ag intermediates (He et al. 2013).

Cu is considered to be a good alternative to Ag for cathode
materials. Cu is widely distributed on the Earth and much
cheaper than Ag (almost 10 times), although it has shown
lower catalytic activities (Isse et al. 2012). A limited number
of reports have been published on the direct electrochemical
reduction of halogenated organics on Cu cathodes. Isse et al.
(2012) explored the mechanism and electrocatalytic activity of
Cu in the reduction of polychloromethanes (CCl4, CHCl3, and
CH2Cl2) in dimethylformamide + 0.1 M Pr4NBF4. The prin-
cipal reduction pathways occur via the sequence of reactions
in Eqs. (5)–(7) (Isse et al. 2012).

CHnCl 4−nð Þ þ e−→•CHnCl 3−nð Þ þ Cl− ð5Þ
•CHnCl 3−nð Þ þ e−→−C HnCl 3−nð Þ ð6Þ
−C HnCl 3−nð Þ þ HB⇋CH nþ1ð ÞCl 3−nð Þ þ B− ð7Þ

where HB is any proton donor present in the solution. The first
step in this process is reductive cleavage of the C-Cl bond,
with concerted dissociative electron transfer (Eq. (5)). The
produced intermediate radical, •CHnCl(3 − n), is immediately
reduced to −CHnCl(3 − n) (Eq. (6)) and is then rapidly proton-
ated by the proton donors present in the solution (Eq. (7)). The
end product of the process is methane. The main function of
Cu in this process is to reduce the C-Cl bond.

The Cu electrode and its hybrids show excellent electrocat-
alytic activities in the reductive cleavage of C-X bonds (Mao
et al. 2012; Durante et al. 2014; Tan et al. 2018). As shown in
Table 1,Mao et al. (2012) obtained a high chlorine elimination
efficiency from trichloroethylene (almost 98%) by using a Cu
foam electrode under the optimum conditions: Cu foam elec-
trode of thickness 9.525 mm, current 40 mA, and 0.042-
mol L−1 Na2SO4. However, the Cu cathode gave poor degra-
dation of monochloroacetic acid (Scialdone et al. 2014).
Perhaps, the weak interactions between the organic molecules
and Cu electrode lead to poor efficiency, similarly to the case
for the Ag cathode. Cu is also used in hybrids/alloys with
other metals, e.g., Pd-Cu nanoparticles (Durante et al. 2014),
Cu/Fe (Chen et al. 2018), PVP-Cu/Fe (Li et al. 2018), s-Fe/Cu
(Yu et al. 2017b), and Cu/Al (Huang et al. 2015). Note that Pd-
Cu nanoparticles deposited on a GC substrate by a two-stage
process show excellent electrocatalytic activity in the reduc-
tive cleavage of C-Cl bonds (Durante et al. 2014). The Pd-Cu
nanoparticles essentially behave like bulk Pd, which is more
active than Cu. The use of carbon or carbon-based materials
for cathodes has also been investigated for electrocatalytic
reductive dehalogenation; materials studied include boron-
doped diamond (BDD) (Zhao et al. 2012), graphite
(Radjenović et al. 2012; Song et al. 2017; Flores et al.
2018), GC (Albo et al. 2017; Deng et al. 2017), and reticulated
vitreous carbon (Ramirez-Pereda et al. 2018). An excess of
surface negative charges can lead to breakage of C-X bonds
via Eq. (4). Carbon-based materials are cheap and give high
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overpotentials for hydrogen evolution, but their high resis-
tance and low electrocatalytic activity make operating costs
high (Su et al. 2012). Pure carbon electrodes have attracted
little attention for reductive dehalogenation, because they give
poor dehalogenation efficiencies (Brillas and Martínez-Huitle
2014; Wang and Lu 2014). For example, the data in Table 1
show that when graphite was used as the cathode, only 4.4%
current efficiency and 28% abatement efficiency were ob-
served in monochloroacetic acid degradation by Scialdone
et al. (2014); 30.8% removal efficiency was observed for
hexachlorobenzene (HCB) byWang and Lu (2014). The elec-
trocatalytic activity of a BDD electrode is higher than those of
graphite and carbon paper electrodes in debromination (Zhao
et al. 2012). However, for low concentrations of halogenated
organics, carbon electrodes can give a sufficiently high
dehalogenation efficiency. Radjenović et al. (2012) studied
the degradation of 17 disinfection by-products (DBPs) at
low microgram per liter concentrations with a resin-
impregnated graphite cathode. The results show that polariza-
tion of resin-impregnated graphite cathode leads to the easier
adsorption of hydrophilic DBPs on the electrode, and this
increases the effectiveness of electrochemical reduction.

Indirect electrochemical reduction

This section reviews the electrocatalytic hydrodehalogenation
(ECH) of halogenated organic compounds; ECH is the most
popular method of indirect electrochemical reduction for re-
ductive dehalogenation. ECH gives good selective removal of
halogen atoms from halogenated compounds under mild con-
ditions. The mechanism of ECH involves electrochemical
reductive dehalogenation of adsorbed halogenated organic
substrates by adsorbed hydrogen atoms (Hads) from hydrogen
evolution or a hydrogen feed, via the reactions shown in
Eq. (8)–(13) (Zhu et al. 2013; Shi et al. 2015).

2H2O H3O
þð Þ þ 2e− þM→2 Hð ÞadsMþ 2OH− H2Oð Þ ð8Þ

H2→2 H½ � ð9Þ
Mþ H½ �→ Hð ÞadsM ð10Þ
R−XþM→ R−Xð ÞadsM ð11Þ
R−Xð ÞadsMþ 2 Hð ÞadsM→ R−Hð ÞadsMþ HX ð12Þ
R−Hð ÞadsM→R−HþM ð13Þ

where M is a metallic surface. In the first step, Hads is formed
on the cathode surface by electroreduction of water and/or
f rom a hydrogen feed (Eqs . (8)– (10) ) . Then, a
hydrodehalogenation reaction occurs between (H)adsM
and the adsorbed halogenated organic, (R-X)adsM
(Eqs. (11)–(13)). The (H)ads replaces the halogen atom in
(R-X)adsM (Song et al. 2017). In other words, the reductive
atomic hydrogen generated on the cathode surface is

transferred for ECH during this reaction (Pan et al. 2008;
Mao et al. 2014). ECH is considerably affected by the electro-
chemical characteristics of the cathode material and reaction
conditions. The electrode plays a crucial role not only in sup-
plying electrons for the reaction but also in forming Hads.
Electrode materials with good catalytic activities that generate
reductive atomic hydrogen are therefore required for ECH.
Metal electrodes or modified electrode materials, e.g., Pb
(Chen et al. 2010; Sun et al. 2013) and Ni (He et al. 2013),
have excellent electrocatalytic activity for ECH of halogenat-
ed organics. Pd has a strong ability to adsorb/absorb hydrogen
under ambient conditions and is considered to be one of the
most effective hydrodehalogenation catalysts (Zhou et al.
2012; Zhao et al. 2013). However, the large-scale use of Pd
in electrodes is limited by its high cost. To resolve this prob-
lem, noble-metal micro-/nanoparticles are loaded on a cathode
substrate at high dispersity and on a large surface area to
enable less expensive potential applications (Sun et al. 2013;
Perini et al. 2014). The data in Table 1 show that, in general,
Pd electrodes loaded with noble-metal micro-/nanoparticles or
with other introduced metals show high catalytic activities in
the ECH of halogenated organics; examples include Pd/
carbon paper (Zhao et al. 2014), Pd/Ni (He et al. 2013), Pd/
Ag/Ni (He et al. 2013), Pd/Cu/Ni (He et al. 2013), Pd-Fe/
graphene (Song et al. 2017; Xu et al. 2018b), Pd-Ti/TiO2

nanotubes (TNTs) (Xie et al. 2013), Pd/polymeric pyrrole-
cetyl (PPy)-trimethyl ammonium bromide (CTAB)/foam-Ni
(Sun et al. 2013), Pd/Ni foam (Yang et al. 2015), Pd-carbon
nanotubes (CNTs)/Ni foam (Yang et al. 2015), Pd/CNTs/Ti
(Chen et al. 2010), Pd/Ti (Chen et al. 2010), Pd/graphite
(Chen et al. 2010), Pd-Ni (sodium dodecyl benzene sulfonate
(SDBS))/Ti (Sun et al. 2012a), Pd/PPy/Ni (Sun et al. 2010),
Pd/PPy-sodium dodecyl sulfonate (SLS)/Ti (Sun et al. 2012b),
Polyanionic (PAC)-Pd/Fe (Huang et al. 2018), Re-Pd-
bimetallic (BC) (Xu et al. 2018a, b, c, d), palladium-
polypyrrole-foam nickel (Pd/PPy(PTS)/Ni) (Li et al. 2012),
Pd/SBA-15 (Zhang et al. 2018), Pd58Ni42(SDBS)/PPy/Ti
(Sun et al. 2014), Pd-Ni (cetyl trimethyl ammonium bromide
(CTAB))/Ti (Sun et al. 2014b), Cu@Pd/Ti (Chen et al. 2015),
and Rh-Pd (Xu et al. 2018d). Dehalogenation efficiencies of
almost 100% have been achieved in ECH of many highly
halogenated organics, such 2,4-DCP, pentachlorophenol, and
TCAwith Pd-based electrodes. Zero-valent iron has been in-
corporated with Pd to form Pd/Fe bimetallic catalysts, which
show high catalytic activities in the degradation of halogenat-
ed organic compounds (Qiu et al. 2011; Shi et al. 2015; Song
et al. 2017). Song et al. (2017) prepared graphene-supported
Pd/Fe nanoparticle catalysts by a convenient method based on
photocatalytic reduction under mild conditions. The average
size of the Pd0.5/Fe0.5 nanoparticles was 6.75 ± 0.05 nm, with
a uniform distribution on graphene. Figure 2 shows that the
reduction peak of Pd0.5Fe0.5/graphene is stronger than those of
Pd1.0/graphene and Fe1.0/graphene. Xu et al. (2018b) prepared
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a Pd-Fe cathode for degradation of 4-bromophenol (4-BP).
The removal rate of 4-BP reached 100% at the cathode in
60 min. This enhancing effect may result from the Fe
particles/nanoparticles performing different functions: (i)
playing a significant role in the dispersion state of Pd particles;
(ii) producing hydrogen, which can be collected by Pd to form
Hads; (iii) performing direct reductive dehalogenation; and (iv)
reducing the interfacial impedance (Zahran et al. 2013; Luo
et al. 2014; Song et al. 2017).

Cathode substrates, such as GC (Qiu et al. 2011),
graphene (Shi et al. 2014; Song et al. 2017), granular acti-
vated carbon (Zhao et al. 2014), Ti (Sun et al. 2014a, b; Su
et al. 2017), Ti/TiO2 (Xie et al. 2013), mesoporous N-doped
carbon (Cui et al. 2017), Ni foam (Wu et al. 2017), and
carbon fiber (Mao et al. 2014), have been considered as
potential support materials for loaded metal nanoparticles
for ECH. In recent years, many studies have focused on
the modification of cathode substrates to improve the elec-
trocatalytic performance. For example, the dispersion of
metal catalysts on a support surface can be improved by
introducing surface functionalities by chemical oxidation
and acid/base and plasma treatment (Diaz et al. 2011; Sun
et al. 2018). Doping carbonaceous materials with hetero-
atoms (e.g., N, B, or P) is an effective approach to improv-
ing the catalytic performance of a supported catalyst (Cui
et al. 2017). For example, Perini et al. (2014) prepared an N-
GC electrode modified by N2+ and N+ ion implantation, in
which the nitrogen groups were placed near the new edges
of the graphitic microstructure, as shown in Fig. 3. The
nitrogen functional groups help to decrease the size and
increase the dispersion of catalyst particles by affecting the
nucleation and growth kinetics during Pd nanoparticle depo-
sition. As a result, the catalytic activity of a Pd nitrogen-
implanted electrode in C-Cl bond activation is higher than
those of bulk Pd and Pd nanoparticles loaded on pristine GC
electrodes (Perini et al. 2014).

Oxidative degradation via electrochemical
oxidation

Electrochemical oxidation is an advanced oxidation process
with an excellent ability to degrade halogenated organics by
powerful electrogenerated oxidants. Electrochemical oxida-
tion is divided into direct oxidation and indirect oxidation,
according to the production method and type of oxidant pro-
duced. Electrochemical reduction cannot degrade pollutants
completely (Martinez-Huitle and Brillas 2009), but electro-
chemical oxidation can convert organic contaminants to CO2

and H2O by electrochemical combustion or into simpler frag-
ments by electrochemical conversion (Comninellis 1994).

In recent years, most studies of electrochemical oxidation
of halogenated organics have focused on nanostructured elec-
trode materials, the degradation mechanisms, corresponding
kinetics, and the fate of the halogen. As in the case of electro-
chemical reduction, the electrodes used for electrochemical
oxidation have several basic characteristics, such as high elec-
trocatalytic activity, long service lifetime, good electrochemi-
cal stability, good conductivity, and ease of preparation. The
pathways and mechanisms of the degradation of different ha-
logenated organics during electrochemical oxidation have also
been investigated to identify the intermediates or final prod-
ucts of the oxidation process to ensure that the products are
environmentally safe (Sires et al. 2014). Table 2 shows data
obtained at various electrodes for electrochemical oxidation of
a range of halogenated organics; the data were collected by a
literature survey.

Direct electrochemical oxidation

Direct electrochemical oxidation proceeds by a direct electron
exchange between the anode and an organic molecule at the
anode surface (Rao and Venkatarangaiah 2014). This process
is described by two theoretical models developed by
Comninellis (1994): electrochemical combustion and electro-
chemical conversion. Electrochemical combustion occurs di-
rectly at the anode with generation of physically adsorbed
active oxygen (adsorbed hydroxyl radicals, •OH), and electro-
chemical conversion occurs directly at the anode with gener-
ation of chemisorbed active oxygen (oxygen in the oxide lat-
tice, MOx + 1) (Brillas and Martínez-Huitle 2014; Medeiros de
Araújo et al. 2014). Physically adsorbed •OH on the anode
surface is formed by oxidation of water molecules (Eq. (14)).
The adsorbed •OH can interact with an active anode to form a
chemisorbed higher oxide MOx+ 1 (Eq. (15)). If no oxidizable
organics are present, the active oxygens decompose and oxy-
gen is evolved (Eqs. (16) and (17)). When target organic sub-
strates are present, the adsorbed •OH and MOx+ 1 oxidize the
organic compounds that are adsorbed on the anode surface
(Eqs. (18) and (19)). In general, physically adsorbed •OH is
more beneficial for oxidizing organics than is oxygen in the

-0.8 -0.4 0.0 0.4 0.8

-0.16

-0.08

0.00

0.08

Potential (V)

Pd
1.0

/graphene

Fe
1.0

/graphene

Pd
0.5

Fe
0.5

/graphene

t
nerr

u
C

(
A

m
)

Fig. 2 Cyclic voltammetry curves for Pd1.0/graphene, Fe1.0/graphene,
and Pd0.5Fe0.5/graphene catalysts in 0.5-mol L−1 Na2SO4 solution
(pH = 12.8) with H2 feed (Song et al. 2017)
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oxide lattice. The complete degradation and selective conver-
sion of the organic substrate are shown schematically in Fig. 4.

MOX þ H2O→MOX
•OHð Þ þ Hþ þ e− ð14Þ

MOX
•OHð Þ→MOXþ1 þ Hþ þ e− ð15Þ

MOX
•OHð Þ→1=2O2 þMOX þ Hþ þ e− ð16Þ

MOXþ1→1=2O2 þMOX ð17Þ
RþMOX OHð ÞZ→z=2CO2 þ zHþ þ ze− þMOX ð18Þ
RþMOXþ1→ROþMOX ð19Þ

Electrochemical oxidation involves side reactions. For ex-
ample, oxygen evolution occurs when the reaction potential
reaches the oxygen evolution overpotential, and this increases
energy consumption. Direct oxidation should perform at a
potential well below the oxygen evolution overpotential
(Rao and Venkatarangaiah 2014). An anode with a high
overpotential for oxygen evolution is required to ensure a high
degradation efficiency, to avoid wasting energy on water split-
ting (Chen 2004). The choice of anode material is therefore
crucial. Various anode materials have been investigated to
improve the performance of direct oxidation for degradation
of halogenated organics. The materials tested include single
metals, such as Pt (Liu et al. 2018b) and Au (Candu et al.
2017), metallic oxide, such as PbO2 (Gong et al. 2018),
ZrO2 (Yao et al. 2012; Poungchan et al. 2016), and IrO2

(Guzman-Duque et al. 2014; Markou et al. 2017), carbon ma-
terial, such as CNTs (Khene and Nyokong 2012), BDD (Lan
et al. 2017; Flores et al. 2018), and GC (Gonzalez et al. 2013),
and some materials of hybrids based on active species, such as
dimension stable anodes (DSAs) (Brillas and Martínez-Huitle

2014; Markou et al. 2017), Si/BDD (Madsen et al. 2014), and
Ti/Pt10-Ir10 (Madsen et al. 2014). The most widely investigat-
ed materials are Pt, PbO2, CNT, BDD, and their hybrids.
These were discussed here in more detail.

Pt metal electrodes have been extensively studied. They
show good electrocatalytic activity in direct oxidation ofmany
halogenated organics, e.g., 3-bromobenzoic acid (3-BBA) (Ye
et al. 2013), imidacloprid (Turabik et al. 2014), iopamidol (Liu
et al. 2018b), halogenated nitrobenzene (Ma et al. 2017a),
clofibric acid (Sires et al. 2006), and 4-CP (Ma et al. 2009).
Sirés et al. (2006) reported that clofibric acid was destroyed
more rapidly on a Pt electrode than on a BDD electrode. This
is attributed to stronger adsorption of clofibric acid on the Pt
surface than on the BDD surface, which enhances the oxida-
tion reaction with •OH. However, the use of Pt electrodes is
restricted because of their low oxygen evolution potential,
which results in passivation by pollutants or intermediates
(Zhao et al. 2009). The data in Table 2 show that many inter-
mediates and products remain stable in solution when Pt is
used, resulting in only 30% total organic carbon (TOC) re-
moval efficiency (Sires et al. 2006). Garza-Campos et al.
(2014) reported that a TOC removal efficiency of 46% was
obtained in degradation of the herbicide atrazine with a Pt
electrode. Another study showed that an insoluble oligomer
remained on the Pt electrode surface, which could poison the
Pt electrode and result in gradual loss of its electrochemical
activity (Ma et al. 2009).

One alternative is the PbO2 electrode. PbO2 is a good anode
material because of its excellent electrical conductivity, high
overpotential for oxygen evolution, and low cost (Jiang et al.
2011). Cao et al. (2009) and Duan et al. (2012) investigated
the use of a PbO2 electrode for 4-CP elimination. They

N+ ion trapped 

into carbon 

vacancies

N graphitic defects

Pyrrolic defects

Pyridinic defects

CN terminal groups

Fig. 3 Ball-and-stick model of
the different chemical species
obtained after ion implantation in
GC (Perini et al. 2014)
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reported that direct electrochemical processes with a pure
PbO2 electrode decreased the 4-CP contents by 87.3 and
78.5%, respectively, in 2 h. The oxygen release ability of
PbO2 is the same as that of SnO2, but the working lifetime
and pollutant removal efficiency of PbO2 are higher than those
of SnO2 (Duan et al. 2016; Wang et al. 2018a). However, the
use of PbO2 electrodes is limited by several disadvantages,
such as a relatively low electrocatalytic activity, short service
lifetime, and potential release of toxic Pb2+ ions in strongly
acidic solutions at high current densities (Brillas and
Martínez-Huitle 2014; Duan et al. 2016; Qiao et al. 2018).
For these reasons, many recent studies have focused on the
use of PbO2 anodes that have been modified with doping ions,
other metal particles, or surfactants (Liu et al. 2014). Various
studies have shown that better performances in the degrada-
tion of halogenated organics can be achieved with modified
PbO2 electrodes, e.g., CNT-PbO2 (Duan et al. 2012), CTAB-
CNT-PbO2 (Duan et al. 2012), LAS-CNT-PbO2 (Duan et al.
2012), Ce-PbO2 (Qiao et al. 2018), Er-chitosan-F-modified
PbO2 (Wang et al. 2010), F-doped PbO2 (Cao et al. 2009),
multiwalled (MW)CNTs-OH-PbO2 (Xu et al. 2017), and
GNS-PbO2 (Duan et al. 2017) electrodes. Wang et al. (2010)
compared the performances of three different modified PbO2

electrodes, namely an Er-modified PbO2 electrode, a F-
modified PbO2 electrode, and an Er-chitosan-F-modified
PbO2 electrode, in the treatment of 2,4-DCP in aqueous solu-
tion. The Er-chitosan-F modified PbO2 electrode gave the best
result: the removal rates of 2,4-DCP and TOC were 95% in
120 min and 53% in 360 min, under the conditions current
density 5 mA cm−2, solution volume 180 mL, and initial 2,4-
DCP concentration 90 mg L−1. The service lifetimes of mod-
ified PbO2 electrodes, such as MWCNTs-OH-PbO2 (Xu et al.
2017), F-PbO2 (Cao et al. 2009), CNTs-Bi-PbO2 (Chang et al.
2014b), PbO2-ZrO2 (Yao et al. 2012), and GNS-PbO2 (DuanT
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et al. 2017), are several times greater than that of unmodified
electrode. The results of stability tests on the CNT-Bi-PbO2

electrode are showed in Fig. 5a. The working lifetime of the
CNT-Bi-PbO2 electrode is 4.16 times longer than that of the
PbO2 electrode (Chang et al. 2014b). The working lifetime of
the GNS-PbO2 electrode is 1.93 times longer than that of a
traditional PbO2 electrode (Fig. 5b) (Duan et al. 2017). When
the concentration of ZrO2 nanoparticles reached 60 mg L−1,
the PbO2-ZrO2 electrode achieved a working lifetime of
141 h, which is almost four times that of the pure PbO2 elec-
trode (Yao et al. 2012). The presence of CNT and Bi in the
CNTs-Bi-PbO2 improved the morphological structure and in-
creased the oxygen evolution overpotential; this decreased
oxygen evolution, which is one of the major reasons for strip-
ping and dissolution of the PbO2 film (Chang et al. 2014b).

Carbon materials, e.g., CNTs (Xu et al. 2017), GC
(Fernandez et al. 2014), and BDD (Dominguez et al.
2018b), have been widely investigated in electrochemical ox-
idation because of their high surface area, electrical conduc-
tivity, chemical stability, and low cost (Zhai et al. 2011).
Activated carbon, CNTs, and GC are usually used as catalyst
supports and are involved in formation of new active sites
(Chang et al. 2014a). There are few reports of electrochemical
oxidation of halogenated organics on GC electrodes (Duan
et al. 2013; Fernandez et al. 2014). However, CNTs are con-
sidered to be a special and ideal template as a carrier for nano-
particles and give good dispersion (Wildgoose et al. 2006).
For example, Pogacean et al. (2014) suggested that double-
and multi-walled CNTs have larger active surface areas than
single-walled CNTs and give greater interfacial transfer of
electrons. There is also increasing interest in combining
CNTs with other electrode materials to improve the electro-
chemical properties (Duan et al. 2012; Chang et al. 2014a).
Duan et al. (2012) have focused on doping CNTs into PbO2

films by electrodeposition to fabricate an anionic surfactant-
lauryl benzene sulfonic acid sodium (LAS)-CNTs-PbO2 elec-
trode. As shown in Fig. 6, the LAS-CNTs-PbO2 electrode
performed better than other PbO2-based electrodes in 4-CP
degradation and TOC removal.

Another important carbon material, BDD, is a special an-
ode material. It has no catalytically active sites for reactant

adsorption, but it shows excellent electrochemical stability
and a wide potential window in aqueous solution (Brillas
andMartínez-Huitle 2014; Ltaief et al. 2018). Only physically
adsorbed active oxygen species are formed on the surface of
the BDD electrode, by water electrolysis, and then electro-
chemical combustion occurs between the physically adsorbed
•OH and halogenated organics (Martinez-Huitle and Brillas
2009); •OH radicals are therefore the main species involved
in pollutant degradation (Guzman-Duque et al. 2014). Anodic
oxidation with a BDD electrode has been used to degrade
many types of halogenated organics, including 3-CP (Ltaief
et al. 2018), 5-fluorouracil (Ochoa-Chavez et al. 2018), 4-CP
(Wang and Li 2012), 2,4-DCP (Wang and Li 2012), 2,4-
dichlorophenoxyacetic acid (2,4-D) (Souza et al. 2016), 5-
fluorouracil (Siedlecka et al. 2018), 2,4,6-trichlorophenol
(2,4,6-TCP) (Wang and Li 2012), HCH (Dominguez et al.
2018a), triclosan (TCS) (Sola-Gutierrez et al. 2018), methy-
lene blue (MB) (Panizza et al. 2007), dodecylpyridinium chlo-
ride (Panizza et al. 2016), crystal violet (Klidi et al. 2019), and
Cl2HC-CHCl2 (Scialdone et al. 2012). Many studies have
shown that direct electrochemical oxidation with a BDD an-
ode can remove the most of the halogenated organic com-
pounds. For example, Ltaief et al. (2018) reported 3-CP re-
moval of about 87% in 6 h using BDD as the anode at 0.05 A
and 0.1 MPa, with an initial 3-CP concentration of
100 mg L−1. Turabik et al. (2014) reported that anodic oxida-
tion of imidacloprid with a BDD anode achieved a high min-
eralization efficiency (91%) and complete TOC removal in
2 h. Nearly complete mineralization was obtained by anodic
oxidation with a BDD anode (Scialdone et al. 2014; Turabik
et al. 2014). Vallejo et al. (2013) reported complete minerali-
zation in 4 h of 2-CP in two different electrolytes (NaCl and
Na2SO4) by using a BDD anode of surface area 70 cm2, a
current density of 900 A cm−2, and a 2-CP concentration of
2 g L−1. To further improve the performance, BDD was de-
posited on various supports, such as Nb, Ti, W, and Si to form
Nb/BDD, Ti/BDD, Si/BDD, and p-Si/BDD electrodes (Brillas
and Martínez-Huitle 2014; Salatiel et al. 2019). These elec-
trodes have been widely used to degrade halogenated organics
and have shown excellent electrochemical stability. Muff et al.
(2012) studied electrochemical oxidation of complex polluted
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groundwater containing chlorinated solvents with two differ-
ent anodes, namely Ti/Pt90-Ir10 and Si/BDD. The Si/BDD
electrode gave better TOC removal and full mineralization
of the organic groundwater contaminants. A similar result is
shown in Fig. 7 (Madsen et al. 2014). However, the unaccept-
ably high costs of these metal substrates (Nb, Ti, W, and Si)
restrict their applications (Martinez-Huitle and Ferro 2006).

Indirect electrochemical oxidation

Indirect electrochemical oxidation is a well-known and effec-
tive technique for oxidizing inorganic and organic pollutants
with electrochemically generated oxidants, such as active
chlorine, sulfate free-radicals (SO4

−•), •OH, H2O2, and ozone.
However, anodic oxidation in chlorine-free wastewater

produces active chlorine species, such as free chlorine and
chlorine-oxygen species. Organic pollutants can be oxidized
to small intermediate products or completely mineralized
(Martinez-Huitle and Brillas 2009; Song et al. 2018).
However, the indirect electrochemical oxidation method of
electrogenerated active chlorine is unsuitable for the degrada-
tion of most wastewater containing halogenated organics be-
cause of possible production of residual chlorine. In contrast,
indirect electro-oxidation with electrogenerated hydroxyl rad-
icals or H2O2 is feasible. In this review, the cathodic indirect
oxidation was mainly discussed.

In electrochemical oxidation, halogenated organics are de-
graded with oxidants, such as H2O2, •OH, SO4

−•, and Cl•.
Note that in cathodic indirect oxidation with H2O2 and •OH,
these species are generated in the cathode chamber. H2O2 is a
green chemical reagent and is widely used for wastewater
treatment. It can be formed via two-electron reduction of ox-
ygen on the cathode surface (Moreira et al. 2017). Eq. (20)
describes the reduction of dissolved oxygen from injected
compressed air or oxygen gas, or water oxidation to generate
H2O2 (Sires et al. 2014). Furthermore, H2O2 can be converted
to •OH, as shown in Eq. (21) (Cheng et al. 2003). Generation
of H2O2 via this reaction has been confirmed by electron spin
resonance spectroscopy (Bian et al. 2014a).

O2 þ 2Hþ þ 2e−→H2O2 ð20Þ
H2O2 þ e−→OH− þ HO• ð21Þ

Much research has focused on the use of a special type of
cathode, namely gas-diffusion cathodes, for this reaction
(Sires et al. 2014). The nature of the electrode material is an
import factor in the electrochemical reduction of oxygen be-
cause it affects the reduction potentials and currents and oxy-
gen adsorption (Sawyer et al. 1982). Carbon materials are
suitable for commercial applications because most of them
are cheap and have high surface areas. In recent years, re-
search in this field has centered on carbon or carbon-based
materials for degradation of halogenated organics, e.g.,
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graphene (Song et al. 2017; Xu et al. 2018b), carbon-poly
(tetrafluoroethylene) (PTFE) (Moreira et al. 2014), carbon
felt/fiber (Zhang et al. 2018), CNTs (Kim et al. 2016), BDD
(Cotillas et al. 2017, 2018a), and activated carbon (Wang et al.
2012b). For example, a Pd-Fe/graphene catalytic cathode
gives a high removal rate for 4-BP by producing •OH in the
cathode chamber, and 100% mineralization is achieved in 1 h
(Xu et al. 2018b). Cotillas et al. (2017) studied the effects of
sodium chloride and sulfate on the degradation of clopyralid
with BDD electrode; the result showed that the addition of
sodium chloride and sulfate had no significant effect on the
degradation rate of chloride. Carbon-basedmaterials with sup-
ported noble metal show excellent electrocatalytic activity and
electrogeneration of H2O2; this is attributed to the provision of
highly active sites for oxygen reduction. Noble metals, such as
Pd and Au, are good choices for constructing gas-diffusion
cathodes, but because of their high cost they are used as elec-
trode modifiers (Sljukic et al. 2005). Pd can accelerate the
two-electron reduction of oxygen to H2O2 (Wang and Wang
2009). Wang and Wang (2007) prepared a Pd-modified acti-
vated carbon (Pd/C) catalyst with a Pd loading of 1.3 at% and
Pd particles of average size 4.0 nm. As shown in Fig. 8, when
the Pd/C gas-diffusion cathode systemwas used, the 4-CP and
COD removal efficiencies were higher than those obtained
with a carbon-PTFE cathode system. The catalytic ability of
the Pd/C gas-diffusion electrode system is clearly better than
that of the C/PTFE gas-diffusion electrode system. Many
types of chlorophenol, e.g., 4-CP, 2,4-DCP and pentachloro-
phenol, have been degraded with the Pd/C gas-diffusion elec-
trode system via a combination of cathodic indirect oxidation
and electrochemical oxidation; almost 100% organic removal
efficiencies were achieved and highly TOC removal efficien-
cies were obtained under various conditions by this combined
process (Wang and Wang 2008; Wang et al. 2012a; Bian et al.

2014a). The combined process will be discussed in the elec-
trochemical reduction-oxidation section.

Combined techniques

Some combined and hybrid electrochemical processes have
been proposed to improve the removal efficiency of halogenat-
ed organic contaminants and reduce the application cost. They
include the combination of electrochemical reduction-oxida-
tion, EF, and irradiated electrochemical oxidation, as well as
the use of biochemical method, which are summarized in
Table 3 and discussed as following.

Electrochemical reduction-oxidation

In general, the oxidants produced on the anode surface can
mineralize most organic matter (Wang andWang 2007; Flores
et al. 2018). However, total mineralization of halogenated or-
ganics usually cannot be achieved (Song et al. 2017; Xu et al.
2018b). Toxic intermediates can be produced under incom-
plete mineralization, as mentioned above. For example, the
aromatic nucleus of a chlorinated organic pollutant is usually
opened, forming many chlorinated aliphatic intermediates
(Hirvonen et al. 2000; Jia et al. 2018). In the disposal of highly
concentrated and poisonous organic wastes, total mineraliza-
tion is not necessary, but toxic intermediate formation before
biological processes is undesirable. Electrochemical pretreat-
ment can be used to improve the effluent biodegradability and/
or decrease the toxicity (Fontmorin et al. 2014). A process that
combines electrochemical reduction and electrochemical oxi-
dation has been developed to resolve this problem and im-
prove the removal efficiency when dealing with halogenated
organics (Wang and Wang 2007; Scialdone et al. 2012;
Moussavi and Rezaei 2017). In this process, the removal of
halogenated organics was usually accomplished by the inter-
action of cathodic compartment and anodic compartment.
Non-halogenated intermediates are formed in the cathodic
compartment after the halogen atoms have been selectively
released from the halogenated organics by electrochemical
reduction. This significantly decreases the toxicity.
Simultaneously or subsequently, the intermediates are oxi-
dized indirectly or directly in the anodic compartment and/or
the cathodic compartment by electrochemical oxidation.
Finally, the halogenated organics are converted into interme-
diates that are biodegradable or easily biodegradable, even to
H2O and CO2. There are two main routes for performing the
combined process: (i) direct electrochemical reduction
coupled with electrochemical oxidation and (ii) indirect elec-
trochemical reduction coupled with electrochemical oxida-
tion. The mechanisms of (i) and (ii) were described by taking
chlorine as an example; dechlorination is carried out in the
cathode chamber by direct and indirect reduction; due to the
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Fig. 8 Removal of 4-CP in the cathodic compartment (■,▼) and anodic
compartment (●, ▲) and COD in cathodic compartment (□, ▽) and
anodic compartment (○, △), during electrolysis with an air feed by
C/PTFE gas-diffusion electrode system (■, ●, □, ○) and Pd/C gas-
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electrostatic interaction, Cl− were adsorbed to the anode
chamber through the exchange membrane and oxidized to
Cl2; the anode chamber also has a certain dechlorination abil-
ity to oxidize the chlorinated organic matter into molecular
acids, even H2O and CO2 (Xu et al. 2019). More routes are
expected to be developed in the future.

An electrochemical reduction-oxidation process combines
direct electrochemical reduction and electrochemical oxida-
tion (anodic oxidation). In this process, halogenated organics
are abated by direct cathodic reduction of the substrate to
dehalogenated compounds, coupled with direct anodic oxida-
tion to CO2 and H2O2. Scialdone et al. (2012b, 2012) pro-
posed a combined process involving direct cathodic reduction
at an Ag cathode and direct anodic oxidation at a BDD cath-
ode for the degradation of halogenated organics, such as 1,2-
dichloroethane and Cl2HC-CHCl2. Their combined process
gave higher abatement (close to 100%) of the pollutants with
the same amount of passed charge, and the same applied cell
voltage compared with the levels achieved by reduction and
oxidation processes, respectively. This process has the benefit
that the cumulative charges at the surfaces of the anode and
cathode are used for pollution conversion (Scialdone et al.
2012). In the case of Cl2HC-CHCl2, no halogenated products
were detected after the electrolysis by the combined process.

Another type of indirect electrochemical reduction coupled
with electrochemical oxidation for degrading halogenated or-
ganics has been thoroughly investigated by Wang’s group.
Their electrochemical diaphragm system consists of a Ti/
IrO2/RuO2 anode and a Pd-modified carbon-based gas-
diffusion electrode, e.g., Pd-modified activated carbon
(Wang and Wang 2009), Pd-modified MWCNTs (Wang
et al. 2012b), and Pd-modified graphene (Bian et al. 2014a;
Song et al. 2017)). During electrolysis, direct anodic oxidation
occurs on the surface of the Ti/IrO2/RuO2 anode with
electrogenerated MOx(•HO) or MOx+ 1 (Wang et al. 2012a).
The graphene-based gas-diffusion cathode can produce high
concentrations of H2O2 for oxidation of halogenated organic
compounds (Zhang et al. 2018). In the cathode cell, the Pd-
modified carbon-based gas-diffusion cathode has two func-
tions: (i) electrocatalytic hydrodehalogenation by Habs on the
Pd surface when a H2 feed is supplied and (ii) cathodic indirect
oxidation with electrogenerated H2O2 by reduction of O2

when an O2 or air feed is supplied (Shi et al. 2014). The
catalysts play an important role in reductive dehalogenation
and acceleration of the two-electron reduction of O2 to H2O2.
The removal efficiencies for 4-CP, 2,4-DCP, and pentachloro-
phenol achieved using the Pd/C gas-diffusion cathode were
higher than those achieved using the C/PTFE gas-diffusion
cathode (Wang and Wang 2007, 2009). When a Pd-modified
activated carbon electrode was used, the removal efficiencies
for CPs (4-CP, 2,4-DCP, and pentachlorophenol) reached al-
most 100%, and dechlorination of the three CPs exceeded
80% in 100 min (Wang et al. 2012b). The dechlorination

products and the main oxidation intermediates were deter-
mined. For 4-CP, the dechlorination product was phenol, and
the oxidation intermediates were hydroquinone, benzoqui-
none, maleic, fumaric, acrylic, malonic, oxalic, acetic, and
formic acids (Wang and Wang 2007). For 2,4-DCP, the de-
chlorination products were 4-CP, 2-CP, and phenol, and the
oxidation intermediates were hydroquinone, benzoquinone,
maleic, fumaric, acrylic, malonic, oxalic, acetic, and formic
acids (Wang and Wang 2008). The dechlorination product of
pentachlorophenol was phenol (Wang and Wang 2009), as
shown in Table 3. Shi et al. (2015) reported that the reduction
of CPs by H formed by water electrolysis occurred simulta-
neously on the cathode surface and might compete with the
reduction of O2 for electrons. This may result in a greater
degree of incomplete oxidation because of stronger resistance
to the two-electron reduction of O2 to H2O2 when treating
high concentrations of CPs by cathodic indirect oxidation.
Xu et al. (2018b) degraded 4-BP via a combined process with
a Pd-Fe/graphene catalytic cathode and a Ti/IrO2/RuO2 anode.
The 4-BP (initial concentration 100 mg L−1) removal efficien-
cy reached almost 100% in 60 min. Zheng et al. (2012) devel-
oped an electrolyt ic process involving catalyt ic
hydrodechlorination and anodic oxidation for the remediation
of groundwater contaminated by chlorinated aromatics. Note
that in situ catalytic hydrodechlorination was achieved using
Pd supported on bamboo charcoal in a flow-through electro-
lytic system with continuous generation of external H2 at the
cathode by water electrolysis. The sole product, i.e., phenol,
was oxidized at the graphite anode. In this study, the 2,4-DCP
removal efficiencies were nearly 100% at pH 2 and about 63%
at pH 5.5. A low influent pH was clearly conducive to cata-
lytic hydrodechlorination, but was not necessary.

Electro-Fenton

The EF process involves cathodic indirect oxidation com-
bined with the Fenton process. The mechanism of EF the
process is based on a free-radical chain consisting of Fe2+ ions
and H2O2, as shown in Eqs. (22)–(24) (Bach et al. 2010,
Rosales et al. 2012). Unlike the case for the Fenton process,
H2O2 in the EF process is generated by two-electron cathodic
reduction of oxygen gas, which is the same as the cathodic
indirect oxidation process (Eq. (22)) (Burgos-Castillo et al.
2018). The strong oxidant (•OH) in this process is produced
by H2O2 activation by addition of Fe

2+ (Eq. (23)) (Galia et al.
2016; Gargouri et al. 2017). The halogenated organics are
destroyed and converted into CO2 and H2O. The removal
process of halogen takes chlorine in EF as an example, the
H2O2 and •OH reacted with halogenated organics to destroy
the C-Cl bond formed Cl−, and then the Cl− may be oxidized
to Cl2, or ClO

− (Burgos-Castillo et al. 2018). Note that Fe2+ is
continuously produced in the solution via the reactions in
Eqs. (24) and (25).
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O2 þ 2Hþ þ 2e−→H2O2 ð22Þ
Fe2þ þ H2O2→Fe3þ þ HO• þ OH− ð23Þ
Fe3þ þ H2O2→Fe2þ þ HO•

2 þ Hþ ð24Þ
Fe3þ þ HO•

2→Fe2þ þ O2 þ Hþ ð25Þ

Numerous experiments have been performed to compare
traditional electro-oxidation and EF processes and to show the
advantages of EF processes. Almost total mineralization of the
original organics is obtained in the EF process, possibly be-
cause •OH is formed via two paths: anodic oxidation and a
Fenton reaction between added Fe2+ and electrogenerated
H2O2 in the cathodic compartment (Moreira et al. 2013).
However, the contribution of anodic oxidation to the degrada-
tion is lower. For instance, Randazzo et al. (2011) investigated
the synergistic action of BDD (•OH) and •OH in the bulk. In
their study, 1,2-dichloroethane or Cl2HC-CHCl2 of concentra-
tion 4 mmol L−1 was completely mineralized at 420 min and
300 mA by the EF process, but anodic oxidation with a Pt or
BDD anode gave a poor mineralization (Randazzo et al.
2011). Many researchers have used the EF process with an-
odes such as BDD (Brillas et al. 2007) or graphite (Zhao et al.
2007a; Zhang et al. 2018) to enhance the degradation of ha-
logenated organics. BDD anodes have been most studied for
oxidation via the EF process of various organic pollutant, such
as imidacloprid (Turabik et al. 2014), cyanazine (Borras et al.
2013), and 2,4-D (Garcia et al. 2013). Garcia et al. (2014) used
electrochemical oxidation and EF process with single Pt/air-
diffusion or BDD/BDD cell to degrade 2,4-D; the results were
shown in Fig. 9. The 2,4-D was completely mineralized at
approximately 120 min by the attack of BDD (•OH) in elec-
trochemical oxidation with the BDD/BDD cell. The EF

process with a Pt/air-diffusion cell gave complete removal in
about 80 min. Figure 9 also shows that the decrease in the
amount of 2,4-D was slightly more rapid when the coupled
Pt/air-diffusion-BDD/BDD system was used because the ox-
idizing species formed in each individual cell acted simulta-
neously; total removal was achieved in only 60 min. Table 3
shows that Pt anodes have also been investigated for degrada-
tion of organic pollutants, such as clofibric acid (Sires et al.
2007) and 4-chloro-2-methylphenol (Hailu et al. 2016).
However, the data show that the catalytic performance of the
BDD anode is better than that of the Pt anode.

In addition, Methatham et al. (2014) studied the effect of
operating parameters on TCS degradation by EF. In this ex-
periment, the optimum operating conditions were found to be
an operating pH of 3, an electrical current density of
0.15 mA cm−2, and a H2O2 to Fe2+ ratio of 40 for complete
oxidation of 2.9 g L−1 of TCS.

Irradiated electrochemical oxidation

Irradiated electrochemical oxidation methods, such as PEC,
are emerging electrochemical advanced oxidation technology
(Brillas and Martínez-Huitle 2014). The reaction mechanism
of PECwith catalyst is different from that without catalyst and
mainly introduces the reaction with catalyst in this review. The
reaction mechanism of PEC with catalyst is light-irradiating
electrode material that generates photoelectrons and holes,
and the generated holes react with treated solution to form
•OH, which destroyed the halogenated organic matter.

PEC oxidation is an electrochemical technique that com-
bines electro-oxidation and photocatalysis. It degrades persis-
tent organic pollutants (Cotillas et al. 2016; Martín de Vidales
et al. 2015) and halogenated organic pollutants in wastewater
by exciting an electron and a positive hole produced by inci-
dent UV/visible/solar light irradiation on a stable semiconduc-
tor anode (He et al. 2006; Philippidis et al. 2009). The positive
hole can directly oxidize halogenated organic compounds, but
the main function of the hole is to oxidize water to give het-
erogeneous •OH, which then oxidizes the organics. However,
electron-hole recombination plays a major role in loss of deg-
radation efficiency of photocatalysis. The bias potential used
for the semiconductor electrode in the PEC process needs to
address this issue by promoting separation of electron-hole
pairs. This provides electron transfer into the external circuit
and accelerates hole production, which results in efficient sep-
aration of electron-hole pairs. Many photoanode materials de-
grade halogenated organics well, e.g., TiO2 (Bera et al. 2018;
Cho et al. 2018), BDD (Martín de Vidales et al. 2016;
Medeiros de Araújo et al. 2015), BiVO4 (Trzesniewski et al.
2017; Shi et al. 2018), WO3 (Nissen et al. 2009; Fernández-
Domene et al. 2018), and Bi2WO6 (Zhao et al. 2007b). For
example, Ojani et al. (2012) reported that the results for 3,4-
DCP degradation by PEC using a TiO2/graphite electrode
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Fig. 9 Degradation of 2.5 L of 300-mg L−1 2,4-D solutions with
electrolysis time in 0.05-mol L−1 Na2SO4 with 0.5-mol L−1 Fe2+, at pH
3.0 and 35 °C. Method: (△) electrochemical oxidation using BDD/BBD
cell at 2.0 A, (□) EF with 0.5 mol L−1 Fe2+ using Pt/air-diffusion cell at
2.0 A, and (◇) EF with 0.5 mol L−1 Fe2+ at 2.0 A of current using coupled
Pt/air-diffusion-BDD/BDD system (Garcia et al. 2014)
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under a potential of 1.2 V versus the reference electrode, pH
8.0, and an initial 3,4-DCP concentration of 6.7 mg L−1 were
better than those achieved by direct photolysis, electrochemi-
cal oxidation, and photocatalysis. Medeiros de Araújo et al.
(2015) used the PEC with the BDD electrode to degrade rho-
damine B (RhB) in NaCl under the current density of
90 mA cm−2; the UV irradiation wavelength is 254 nm.
Also, Cotillas et al. (2018b) reported the PEC with BDD elec-
trode total mineralization of chloramphenicol in urine under
the current density of 100 mA cm−2, pH 5.6 at 25 °C.

Mainly TiO2 photoanodes have been investigated for PEC.
BiVO4 is a promising photoanode material for solar-driven
and visible-light-driven PEC process. In this review, TiO2

and BiVO4 are therefore surveyed and discussed.
TiO2 is the archetypal heterogeneous photocatalyst and is

the most extensively used semiconductor electrode. It is
cheap and non-toxic and has high stability and a wide band
gap of 3.2 eV (Brillas and Martínez-Huitle 2014). However,
TiO2 has two main drawbacks: (i) low quantum yields and (ii)
dominant light absorption in the UV range, which makes the
process expensive (Pablos et al. 2014; Sires et al. 2014; Tang
et al. 2014). Doping with metals or non-metals is an impor-
tant method for improving the charge transfer rate and surface
adsorption (Antony et al. 2016; Thalluri et al. 2016; Choi
et al. 2017; Gutkowski et al. 2017; Wang et al. 2018b). For
example, a Fe-doped TiO2 film has been shown to increase
the photocatalytic efficiency under visible-light irradiation
compared with that of an undoped electrode (Tang et al.
2014). Many doped TiO2 electrodes have been studied for
enhanced photoelectrocatalysis of halogenated organics,
e.g., Pt doped TiO2/Ti (Quan et al. 2004), F-TiO2 (Liu et al.
2017b), and C-doped nanoparticulate TiO2 (Neville et al.
2013). In addition, TiO2-based photoelectrodes have been
synthesized with loaded catalysts or coupled with other semi-
conductors or carbon materials to improve electron-hole sep-
aration; examples are Pt/TiO2 (Lakshminarasimhan et al.
2012), Co/TiO2 (Liu et al. 2018a), TiO2/reduced graphene
oxide (RGO)/C3N4 (Ge et al. 2017), TiO2/WO3 (Soares and
Alves 2018; Yang et al. 2018), Fe3O4/TiO2-S (Yan et al.
2017), Ni-doped TiO2 (Dong et al. 2018), CuInS2-TiO2 NT
(Liu et al. 2011), RGO-Bi-TNTs (Kim et al. 2017),
polyaniline (PANI)/TiO2 (Wang et al. 2011), and TiO2/graph-
ite (Ojani et al. 2012; Liu et al. 2017a). In general, these
modifications for addressing the two limitations can improve
the performances of TiO2-based photoanodes. For example,
Liu et al. (2011) reported that the p-n heterojunction struc-
tures formed in the presence of narrow-band-gap p-type semi-
conductor, i.e., CuInS2, used to modify TiO2 NTs, decreased
electron-hole recombination, and enhanced visible-light ab-
sorption. Larger photocurrents were obtained in CuInS2-TiO2

NTs when electrons from TiO2 coupled with electrons cap-
tured from CuInS2 and were shuttled along oriented TiO2

NTs, driven by the bias voltage. This increased •OH free

radical formation and enhanced the degradation efficiencies
(Liu et al. 2011). A 2,4-D removal rate of 100% was achieved
by using CuInS2-TiO2 NTs under visible light for 160 min,
the detailed data in Table 3. This is much higher than the
value of 65.2% achieved with unmodified TiO2 NTs.
Furthermore, the 2,4-DCP degradation rate obtained in the
PEC process with a PANI/TiO2 film (57.5%) was higher than
that achieved with pristine TiO2 (Wang et al. 2011). Chemical
interactions between PANI and TiO2 increased the carrier
transfer efficiency and induced a synergistic effect that in-
creased the PEC activity (Wang et al. 2011). A combination
of TiO2 with an adequate conductive support enables charge
carrier separation and leads to enhanced conductivity of the
electrode (Pablos et al. 2014). Kim et al. (2017) developed a
co-doped RGO-Bi-TNTs catalyst for MB degradation; the
degradation efficiency was high and the removal rate reached
93%. Figure 10 shows the PEC degradation of MB dye by
single and co-doped TNT catalysts at 5 V in 150 min. The
results show that the co-doped RGO-Bi-TNT catalyst (opti-
mum three-step synthesis) gave MB removal rates 3.9, 1.5,
and 1.4 times higher than those achieved with undoped
TNTs, Bi-TNTs, and RGO-TNTs, respectively. The co-
doped sample was more efficient because both RGO and Bi
enhanced the photocatalytic activity of the TNTs.

BiVO4 has attracted much attention and is one of the most
promising and inexpensive semiconductor materials for the
degradation of halogenated organic matter. It has an excellent
absorption capacity for a wide spectrum of visible light, up to
11% of the solar spectrum, because of its small band gap (only
around 2.4 eV); this is smaller than that of TiO2 (Zhou et al.
2011; Abdi et al. 2013). The photoactivity of the monoclinic
scheelite form of BiVO4 is higher than those of the tetragonal
zircon form and tetragonal scheelite form (Zhou et al. 2011).
Because of these features, BiVO4 is expected to show excel-
lent photoelectrocatalytic activity in halogenated organic deg-
radation under solar light or visible light. However, BiVO4
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photoanodes have three major drawbacks: (i) excessive sur-
face recombination; (ii) poor charge transport; and (iii) slug-
gish surface oxidation kinetics (Abdi et al. 2014; Yu et al.
2017a). Many methods for resolving these issues have been
investigated, such as optimizing the morphology (Liu et al.
2010), forming composite electrode (Min et al. 2014), doping
(Antony et al. 2016; Thalluri et al. 2016; Gutkowski et al.
2017), and loading with electrocatalysts (Yang et al. 2013).
BiVO4 coupled other semiconductors and/or carbon materials
to form composite electrodes would potentially provide a
highly eff icient photoelectrode, similar to TiO2.
Heterojunction structures are formed when BiVO4 is coupled
with other semiconductors, e.g., WO3/BiVO4 (Choi et al.
2017; Zeng et al. 2017; Xu et al. 2018c), CaFe2O4/BiVO4

(Kim et al. 2014a), Ag3PO4/BiVO4 (Cao et al. 2018), and
Bi2WO6/BiVO4 (Ju et al. 2014). These heterojunctions can
decrease charge recombination on the electrode surface (Kim
et al. 2014a). For example, Kim et al. (2014b) described the
valence band of CaFe2O4 in a CaFe2O4/BiVO4 photoanode as
a stepping stone for transferring holes generated from BiVO4

to the electrode/electrolyte interface, leading to reduction of
surface recombination and an increase in the hole injection
yield. As a result, the photocurrent density obtained with the
CaFe2O4/BiVO4 photoanode was 65% greater than that with
the bare BiVO4 photoanode. Cao et al. (2018) prepared a
Ag3PO4/BiVO4 electrode and compared it with BiVO4 elec-
trodes. They found that the Ag3PO4/BiVO4 electrode gave the
best photoelectric catalytic performance. The photocurrent
density increased with increasing potential. The current densi-
ty of Ag3PO4/BiVO4 electrode at the 0.5 V reached
1.25 mA cm−2, which is about three times higher than that
for pure BiVO4 (0.31 mA cm−2). Furthermore, as shown in
Fig. 11, the PEC process using Ag3PO4/BiVO4 electrode gave
the highest activity in norfloxacin degradation, with complete

norfloxacin degradation in 90 min (λ > 420 nm at 0.5 V vs
SCE). In comparison, the degradation of norfloxacin by PEC
using BiVO4 was only 61.4%, indicating that the modified
Ag3PO4 nanoparticles significantly improved the PEC perfor-
mance of BiVO4 electrodes. Furthermore, combining BiVO4

with carbon materials, such as RGO and CNTs, improves
electron transport. Doping of a BiVO4 photoanode with me-
tallic or non-metallic elements often increases the electron-
hole separation yield (Park et al. 2011). Various elements have
been tested as dopants for BiVO4, such as Mo (Subramanyam
et al. 2018), W (Shi et al. 2018), Bi (Wang et al. 2017), Ni
(Kim et al. 2014b), Co (Kim et al. 2014b), Eu (Xue et al.
2017), and F (Xue et al. 2017). Among them,Mo orW doping
of BiVO4 has attracted most attention (Antony et al. 2016;
Thalluri et al. 2016; Choi et al. 2017; Gutkowski et al.
2017). Doping with Mo can enhance the conductivity and
increase the hole diffusion path length, resulting in a signifi-
cant improvement in the photocurrent (Antony et al. 2016).
Doping with W can increase the density of charge carriers,
which are often responsible for the enhanced activity of doped
photocatalysts, and increase electron-hole separation (Thalluri
et al. 2016; Choi et al. 2017; Shi et al. 2018). According to Luo
et al. (2013), the photocurrent of Mo6+- and W6+-doped
BiVO4 were significantly higher than those of Sn4+-doped
BiVO4 and pure BiVO4. This is because of the high formation
energy and lower solubility of impurity ions in Sn4+-doped
BiVO4. The photocurrent of a Mo/W-codoped BiVO4

photoanode was more than 10 times that of undoped BiVO4

(Park et al. 2011). The photocatalytic and photoelectrocatalytic
properties of electrocatalyst-loaded BiVO4 are greater than
those of pure BiVO4. Electrocatalysts, such as Co-based cata-
lysts (Co3O4), RhO2, FeOOH, MnOx, PbO2, and Pd, can de-
crease the bias potential and improve the stability (Ding et al.
2013; Kim et al. 2014b; Shi et al. 2017) and improve the
photoelectrocatalytic performance of BiVO4 by decreasing
the electron-hole recombination (Yang et al. 2013; Bian et al.
2014b).

Some literatures introduce the irradiation of UV light direct-
ly to electrochemical oxidation without catalysts to enhance the
oxidation processes, allowing the complete mineralization of
pollutants (Dos Santos et al. 2017). Malpass et al. (2012) used
photo-assisted electrochemical to degrade atrazine and
achieved complete degradation efficiency in 30 min. They also
reported that photo-electro-Fenton process achieved good re-
moval efficiency of atrazine. Peiter et al. (2017) used Cu2+ as
Fenton reagent to degrade 2,4-diclofenoxiacetic acid and ob-
tained 54% degradation efficiency.

Other combined techniques

In recent years, many crafts of combined other technologies
with electrochemical have emerged to reduce costs of crafts
and to improve the stability of traditional biochemical
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treatment technology and the removal rate of halogenated or-
ganic matters. Several techniques were briefly introduced in
this review.

Some recalcitrant pollutants are present in the environment
for a long time and difficult to remove by conventional biolog-
ical treatment techniques, such as chloronitrobenzenes
(CINBs). Due to the pronounced electron-withdrawing proper-
ty of the nitro and chlorine substituents on the aromatic ring,
CINBs are hydrophobic and persistent, easily accumulate in the
soil, and have antioxidant and antimicrobial oxidative in water,
which easily affect human health through the food chain (Lin
et al. 2011; Wu et al. 2006). The nature of the contaminants
determines that general oxidation techniques cannot degrade
them. Jiang et al. (2016) used bioelectrochemical system
(BES) coupled upflow anaerobic sludge blanket (UASB) to
degrade 2,4-dinitrochlorobenzene (DNCB). They found that
the UASB-BES system has a good removal effect on CINBs,
and the removal efficiency reached 99.31 ± 0.44%. In this pro-
cess, the biomes of UASB-BES system were remarkably more
enriched, and the survival rate of organisms was higher than
that of UASB. Xu et al. (2016) used microbial electrolysis cell
(MEC) combined with an upflow anaerobic sludge blanket
(UASB) reactor to degrade p-chloronitrobenzene, which ob-
tained 99.63 ± 0.37% removal efficiency. Some researchers
used other combined techniques to degrade pollutants and got
higher removal efficiency. For example, Pęziak-Kowalska et al.
(2017) proposed electrochemical oxidation or EF as pretreat-
ment step, and biodegradation was selected as the secondary
treatment method to degrade 4-chloro-2-methylphenoxy and
got a good degradation efficiency. Soriano et al. (2019) used
a strategy that combinedmembrane pre-concentration followed
by electrooxidation of the concentrate to removal the persistent
perfluorohexanoic acid (PFHxA). In the case of the tight
nanofiltration (NF) 90 membrane used in the NF-ELOX pro-
cess, the removal rate of PFHxA reached 99%, and the energy
consumption was reduced by 59.2% compared to electrolysis
alone. A hybrid nanofiltration/electrooxidation process is used
to remove persistent PFHxA, which greatly reduces energy
consumption (Soriano et al. 2017). Raschitor et al. (2017) re-
ported a novel integrated electrodialysis/electro-oxidation
(EDEO) process to degrade ionic pesticide 2,4-D, under the
DSA as electrode material. They got the result which provides
that the degradation rate of the EDEO to 2,4-D was more than
twice that of electrochemical treatment processes in the same
degradation time.

Conclusions and prospects

Efficient electrochemical techniques and corresponding suitable
electrode materials have been established for the degradation of
halogenated organics. However, most of these techniques are
still laboratory scale. Much research on the preparation and

applications of suitable electrode materials together with optimi-
zation of the experimental conditions for various electrochemical
techniques is ongoing. Electrochemical reduction is an effective
dehalogenation treatment and avoids undesired reactions that
produce toxic products or by-products. Generally, electrocatalyt-
ic hydrodehalogenation is more effective than direct electro-
chemical reduction. Electrochemical oxidation is an effective
tool for mineralization of halogenated organics. Although
emerging electrochemical oxidation processes, such as EF,
PEC, and other combined techniques, give high organic removal
efficiencies or TOC removal efficiencies, it is still difficult to
obtain total mineralization, and undesirable toxic halogenated
by-products are formed. Recent progress in emerging electro-
chemical reduction-oxidation processes provides an effective
route for solving this problem, by removing elemental halogen
by electrochemical reduction and degrading non-halogenated
organics by electrochemical oxidation. This technique has great
potential for the degradation of halogenated organics.

It is expected that future electrochemical technologies and
combined electrochemical technologies will be widely used in
industrial wastewater treatment. The future for these technol-
ogies is bright. Further research on electrode materials and
their catalytic mechanisms will provide technical support for
the improvement of electrochemical technology and the com-
bined techniques. Several other complementary techniques
are emerging and can provide innovative electrocatalytic ma-
terials and catalytic pathways for decontamination of efflu-
ents. We are looking forward to the development of more
new joint technologies, such as the combination of ozone
and electrochemical technologies.
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